BISOPROLOL-INDUCED CHANGES IN THE SPECTRAL CHARACTERISTICS OF HEART RATE VARIABILITY IN PATIENTS WITH ATRIAL FIBRILLATION: A CLINICAL CASE


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Spectral analysis of heart rate variability (HRV) can judge the autonomic regulation of myocardial chronotropic function. Medicines can significantly change the spectral HRVs, suggesting that there is a change in cardiac autonomic regulation during drug therapy. Objective. To investigate the effect of the β-blocker bisoprolol on the spectral parameters of HRV in patients with atrial fibrillation (AF). Subjects and methods. The spectral parameters of HRV were investigated in patients with both newly diagnosed AF and its 6-month to 8-year history, who were treated with oral bisoprolol 2.5-5.0 mg. The total power of the HRV spectrum and the fluctuation power of very low frequencies (VLF), low frequencies (LF), and high frequencies (HF) were calculated. Results. The proportion of slow fluctuations (LF) in the newly-diagnosed AF group was shown to be twice lower than that in the long-term AF group, and the proportion of fast fluctuations (HF) was twice higher. This suggests that a major role in the regulation of chronotropic cardiac function is played by the vagus nerve in bisoprol-treated patients with newly diagnosed AF and by the sympathetic nervous system in patients with long-term AF, Conclusion. Drug therapy for AF changes the spectral parameters of HRV and cardiac autonomic regulation. Selecting drug therapy in terms of the clinical type of AF in an individual and a patients autonomic status makes it possible to enhance therapeutic effectiveness.

Full Text

Restricted Access

About the authors

E. P Popova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: kispo-pharm@mail.ru
Candidate of Biological Sciences Moscow

O. T Bogova

Russian Medical Academy of Continuing Postgraduate Education

Email: kispo-pharm@mail.ru
Professor, MD Moscow

S. N Puzin

I.M. Sechenov First Moscow State Medical University (Sechenov University); Russian Medical Academy of Continuing Postgraduate Education; Federal Research and Clinical Center for Reanimatology and Rehabilitology

Email: kispo-pharm@mail.ru
Professor, MD, Academician of the Russian Academy of Sciences; Honored Scientist of the Russian Federation Moscow; Village of Lytkino, Rural Settlement of Sokolovskoye, Moscow Region

D. A Sychev

Russian Medical Academy of Continuing Postgraduate Education

Email: kispo-pharm@mail.ru
Professor, MD; Corresponding Member of the Russian Academy of Sciences Moscow

V. P Fisenko

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: kispo-pharm@mail.ru
Professor, MD; Academician of the Russian Academy of Sciences Moscow

References

  1. Искендеров Б.Г., Рахматуллов Ф.К. Структурные и электрофизиологические показатели функции сердца при пароксизмальной мерцательной аритмии. // Тер. арх. - 2001; 12: 52-6
  2. Kirchhof P., Breithardt G., Bax J. et al. A roadmap to improve the quality of atrial fibrillation management: proceedings from the fifth Atrial Fibrillation Network/ European Heart Rhythm Association consensus conference // Europace. - 2016; 18 (1): 37-50. doi: 10.1093/europace/euv304
  3. Patel P., Ali N., Hogarth A. et al. Management strategies for atrial fibrillation // J.R. Soc. Med. - 2017; 110 (1): 13-22. doi: 10.1177/0141076816677857
  4. Lok N., Lau C. Abnormal vasovagal reaction, autonomic function, and heart rate variability in patients with paroxysmal atrial fibrillation // Pacing Clin. Electrophysiol. - 1998; 21 (2): 386-95. doi: 10.1111/j.1540-8159.1998.tb00062.x
  5. Gal P., Elvan A., Rossi P. et al. Effect of parasympathetic nerve stimulation on atrial and atrioventricular nodal electrophysiological characteristics // Int. J. Cardiol. - 2016; 205: 83-5. doi: 10.1016/j.ijcard.2015.12.027
  6. Stavrakis S., Humphrey M., Scherlag B. et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation // J. Am. Coll. Cardiol. - 2015; 65: 867-75. doi: 10.1016/j.jacc.2014.12.026
  7. Флейшман А.Н., Филимонов С.Н., Климина Н.В. Новый способ подбора препаратов для лечения артериальной гипертонии на основе спектрального анализа вариабельности ритма сердца // Тер. арх. - 2001; 12: 33-9.
  8. Hanley C., Robinson V., Peter R. et al. Status of Antiarrhythmic Drug Development for Atrial Fibrillation. New Drugs and New Molecular Mechanisms // Circ. Arrhythm. Electrophysiol. - 2016; 9 (3): 1-9. doi: 10.1161/CIRCEP.115.002479
  9. Hohendanner F., Heinzel F., Blaschke F. et al. Pathophysiological and therapeutic implications in patients with atrial fibrillation and heart failure // Heart Fail Rev. - 2018; 23 (1): 27-36. doi: 10.1007/s10741-017-9657-9
  10. Akselrod S. Eds M. Malik, A. Camm. Components of heart rate variability. Basis studies. In: Heart Rate Variability / Armonk. N.-Y.: Futura Pablishity. Comp. Inc., 1995; 147-63.
  11. Баевский Р.М., Иванов И.И., Чирейкин Л.В. и др. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем (методические рекомендации) // Вестник аритмологии. - 2001; 24: 65-87
  12. Task Forse of the European Society of Cardiology and the North American Society of Paciety of Pacing and Electrophysiology. Heart rate variability. Standarts of measurements, physiological interpretation and clinical use // Circulation. -1996; 93: 1043-65.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies