The use of Thymaline to correct immune status deviations in COVID-19 (rationale for the use of drug and clinical case)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Data on violations of cellular and humoral immunity in severely patients with COVID-19, as well as the hemostatic system were summarized. It has been shown that patients with COVID-19 have leukocytopenia, lymphocytopenia, neutrophilia, as well as a violation of the ratio between individual subpopulations of T-lymphocytes. The content of pro-inflammatory cytokines increases significantly, which leads to the development of a «cytokine storm». At the same time, such patients develop endothelial dysfunction, hypercoagulation, accompanied by an increase in D-dimer with the subsequent development of microangiopathy (MAP), immunothrombosis, disseminated intravascular coagulation (DIC) and multiple organ failure. A case is given of the use of an immunocorrector thymalin in a patient with a severe course of COVID-19, which contributes to the elimination of disorders in the immune system (including «cytokine storm») and hemostasis.

Full Text

Restricted Access

About the authors

S. A Lukyanov

Chita State Medical Academy; City Clinical Hospital No.1 of the Ministry of Health of the Trans-Baikal Territory

Email: bi_kuznik@mail.ru
Candidate of Medical Sciences Chita

B. I Kuznik

Chita State Medical Academy; Innovative Clinic Academy of Health

Email: bi_kuznik@mail.ru
Professor, MD Chita

V. Kh Khavinson

Saint-Petersburg Institute of Bioregulation and Gerontology; I.P. Pavlov Institute of Physiology

Email: bi_kuznik@mail.ru
Professor; Corresponding Member of RAS Saint-Petersburg

K. G Shapovalov

Chita State Medical Academy; City Clinical Hospital No.1 of the Ministry of Health of the Trans-Baikal Territory

Email: bi_kuznik@mail.ru
Professor, MD Chita

Yu. N Smolyakov

Chita State Medical Academy; Innovative Clinic Academy of Health

Email: bi_kuznik@mail.ru
Candidate of Medical Sciences Chita

P. P Tereshkov

Chita State Medical Academy; Innovative Clinic Academy of Health

Email: bi_kuznik@mail.ru
Candidate of Medical Sciences Chita

Yu. K Shapovalov

Chita State Medical Academy; City Clinical Hospital No.1 of the Ministry of Health of the Trans-Baikal Territory

Email: bi_kuznik@mail.ru
Chita

V. S Konnov

Chita State Medical Academy; City Clinical Hospital No.1 of the Ministry of Health of the Trans-Baikal Territory

Email: bi_kuznik@mail.ru
Candidate of Medical Sciences Chita

E. Magen

Ben Gurion University of Negev

Email: bi_kuznik@mail.ru
Professor, MD Ashdod, Israel

References

  1. Кузник Б.И., Цыбиков Н.Н. Взаимосвязь между иммуногенезом и системой гемостаза: единая система защиты организма. Успехи современной биологии. 1981; 2: 243-60
  2. Кузник Б.И., Васильев В.Н., Цыбиков Н.Н. Иммуногенез, гемостаз и неспецифическая резистентность организма. М.: Медицина, 1989. 320 с.
  3. Lin L., Lu L., Cao W. et al. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020; 9 (1): 727-32. doi: 10.1080/22221751.2020.1746199
  4. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients With 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061-9. doi: 10.1001/jama.2020.1585
  5. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10229): 1033-4. doi: 10.1016/S0140-6736(20)30628-0
  6. Gao Y., Li T., Han M. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020; 92 (7): 791-6. doi: 10.1002/jmv.25770.
  7. McGonagle D., Sharif K., O’Regan A. et al. The Role of Cytokines including interleukin-6 use in COVID-19 pneumonia related macrophage activation syndrome. Autoimmun Rev. 2020; 19 (6): 102537. doi: 10.1016/j.autrev.2020.102537
  8. Qin C., Zhou L., Hu Z. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020; 71 (15): 762-8. DOI: 10.1093/ cid/ciaa248
  9. Neurath M.F. Covid-19 and immunomodulation in IBD. Gut. 2020; 69 (7): 1335-42. doi: 10.1136/gutjnl-2020-321269
  10. Jamilloux Y., Henry T., Belot A. et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020; 19 (7): 102567. doi: 10.1016/j.autrev.2020.102567
  11. Beristain-Covarrubias N., Perez-Toledo M., Thomas M.R. et al. Understanding infection-induced thrombosis: lessons learned from animal models. Front Immunol. 2019; 10: 2569. doi: 10.3389/fimmu.2019.02569
  12. Henry B.M., Vikse J., Benoit S. et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: a novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020; 507: 167-73. doi: 10.1016/j.cca.2020.04.027
  13. Витковский Ю.А., Кузник Б.И., Солпов А.В. Патогенетическое значение лимфоцитарно-тромбоцитарной адгезии. Медицинская иммунология. 2006; 8 (5-6): 745-53
  14. Liu Y., Yang Y., Zhang C. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020; 63: 364-74. doi: 10.1007/s11427-020-1643-8
  15. Кузник Б.И., Скипетров В.П. Форменные элементы крови, сосудистая стенка, гемостаз и тромбоз. М: Медицина, 1974 ; 308 с.
  16. Nakamura S., Nakamura I., Ma L. et al. Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo. Kidney Int. 2000; 58: 251-9. doi: 10.1046/j.1523-1755.2000.00160.x
  17. Ma J., Weisberg A., Griffin J.P. et al. Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney Int. 2006; 69: 1064-72. doi: 10.1038/sj.ki.5000201
  18. Keragala C.B., Draxler D.F., McQuilten Z.K. et al. Haemostasis and innate immunity - a complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br J Haematol. 2018; 180: 78298. doi: 10.1111/bjh.15062
  19. Oehmcke S., Mörgelin M., Herwald H. Activation of the human contact system on neutrophil extracellular traps. J Innate Immun. 2009; 1: 225-30. doi: 10.1159/000203700
  20. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. et al. , Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020; 217 (6): e20200652. doi: 10.1084/jem.20200652
  21. Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020: 138999. doi: 10.1172/jci.insight.138999
  22. Зубаиров Д.М., Зубаирова Л.Д. Микровезикулы в крови, функция и их роль в тромбообразовании. М.: ГЕОТАР-Медиа, 2009; 168 с.
  23. Joly B.S., Siguret V., Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020; 24: 1603-6. doi: 10.1007/s00134-020-06088-1
  24. Goh K.J., Choong M.C., Cheong E.H. et al. Rapid Progression to Acute Respiratory Distress Syndrome: Review of Current Understanding of Critical Illness from COVID-19 Infection. Ann Acad Med Singapore. 2020; 49 (3): 108-18.
  25. Masic Izet, Naser Nabil, Zildzic Muharem. Public Health Aspects of COVID-19 Infection With Focus on Cardiovascular Disea. Mater Sociomed. 2020; 32 (1): 71-6. doi: 10.5455/msm. 2020.32.71-76
  26. Zhavoronkov A. Geroprotective and Senoremediative Strategies to Reduce the Comorbidity, Infection Rates, Severity, and Lethality in Gerophilic and Gerolavic Infections. Aging (Albany NY). 2020; 12 (8): 6492-510. doi: 10.18632/aging.102988
  27. Alijotas-Reig J., Esteve-Valverde E., Belizna C. et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev. 2020; 19 (7): 102569. doi: 10.1016/j.autrev.2020.102569
  28. Zhang C., Wu Z., Li J.W. et al. The cytokine release syndrome (CRS) of severe COVID-19 and interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020; 28: 105954. doi: 10.1016/j.ijantimicag.2020.105954
  29. Фомина Д.С., Потешкина Н.Г., Белоглазова И.П. и др. Сравнительный анализ применения тоцилизумаба при тяжелых COVID-19-ассоциированных пневмониях. Пульмонология. 2020; 30 (2): 151-9 doi: 10.18093/0869-0189-2020-30-2-151-159
  30. Sargiacomo C., Sotgia F., Lisanti M.P. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging (Albany NY). 2020; 12 (8): 6511-7. doi: 10.18632/aging.103001
  31. Alam M.M., Mahmud S., Rahman M.M. et al. Clinical Outcomes of Early Treatment With Doxycycline for 89 High-Risk COVID-19 Patients in Long-Term Care Facilities in New York. Cureus. 2020; 12 (8): e9658. doi: 10.7759/cureus.9658
  32. Zhou M., Zhang X., Qu J. Coronavirus disease 2019 (COVID-19): a clinical update. Front Med. 2020; 14 (2): 126-35. doi: 10.1007/s11684-020-0767-8
  33. Хавинсон В.Х., Кузник Б.И., Стуров В.Г. и др. Применение препарата Тималин® при заболеваниях органов дыхания. Перспективы использования при COVID-19. РМЖ. 2020; 9: 24-30.
  34. Кузник Б.И., Хавинсон В.Х. Влияние Тималина на системы иммунитета, гемостаза и уровень цитокинов у пациентов с различными заболеваниями. Перспективы применения при COVID-19. Врач. 2020; 31 (7): 18-26 doi: 10.29296/25877305-2020-07-03
  35. Морозов В.Г., Хавинсон В.Х. Выделение из костного мозга, лимфоцитов и тимуса полипептидов, регулирующих процессы межклеточной кооперации в системе иммунитета. Докл. АН СССР. 1981; 261 (1): 235-9
  36. Морозов В.Г., Хавинсон В.Х., Малинин В.В. Пептидные тимомиметики. СПб: Наука, 2000; 157 с.
  37. Морозов В.Г., Хавинсон В.Х. Выделение, очистка и идентификация иммуномодулирующего полипептида, содержащегося в тимусе телят и человека. Биохимия. 1981; 46 (9): 1652-9
  38. Хавинсон В.Х., Кузник Б.И., Рыжак Г.А. Пептидные геропротекторы -эпигенетические регуляторы физиологических функций организма. СПб: Из-во РГПУ им. И.А Герцена, 2014; 279 с.
  39. Кузник Б.И., Лиханов И.Д., Цепелев В.Л. и др. Теоретические и клинические аспекты биорегулирующей терапии в хирургии и травматологии. Новосибирск: Наука, 2008; 312 с.
  40. Временные методические рекомендации. Диагностика, профилактика и лечение новой коронавирусной инфекции (COVID-19). Версия 7 (03.06.2020). М., 2020; 165 с.
  41. Marfella R., Paolisso P., Sardu C. et al. Negative impact of hyperglycaemia on tocilizumab therapy in Covid-19 patients. Diabetes Metab. 2020; S1262-3636. doi: 10.1016/j.diabet.2020.05.005

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies