Leptin resistance: possible mechanisms of formation and potential possibilities of correction


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Leptin is a peptide hormone derived from adipocytes that contributes to the homeostatic regulation of energy balance and metabolism (primarily fat) through the humoral and nerve pathways. Leptin acts on neurons in specific areas of the brain, such as the hypothalamus, hippocampus, and brainstem, to regulate food Intake, thermogenesis, energy expenditure, and lipid and glucose metabolism. A biomarker of leptin resistance Is abnormally elevated levels of circulating leptin, which is common In obese people. Leptin resistance is defined as a decreased sensitivity or Inability of the brain to respond to leptin, which is accompanied by impaired ability of leptin to suppress appetite or increase energy expenditure, which ultimately leads to overweight, obesity, other metabolic disorders and cardiovascular disease. Leptin resistance is an Important clinical problem; however, no dmgs have yet been found to correct It, and this is primarily due to significant gaps in the pathophysiology of leptin. At the same time, more and more data are emerging on new mechanisms of leptin resistance. Here, we have combined data from studies related to leptin resistance and associated diseases in order to better understand the physiology and pathophysiology of leptin, and also described new strategies for the treatment of lipid disorders, in particular obesity.

Full Text

Restricted Access

About the authors

A. A Borodkina

Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases; State Autonomous institution of healthcare «Kemerovo regional clinical hospital

O. V Gruzdeva

Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University

E. E Bychkova

Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases

G. P Makshanova

Kemerovo State Medical University

E. I Palicheva

Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University

References

  1. Banks WA, Kastin A.J., Huang W. et al. Leptln enters the brain by a saturable system independent of insulin. Peptides. 1996; 17 (2): 305-11. doi: 10.1016/0196-9781 (96)00025-3
  2. Halaas J.L., Gajiwala K.S., Maffei M. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science (Washington DC). 1995; 269 (5223): 543-6. doi: 10.1126/science.7624777
  3. Zhang Y.Y., Proenca R.t Maffei M. et al. Positional cloning of the mouse obese gene and its human homolog. Nature. 1994; 372 (6505): 425-32. doi: 10.1038/372425a0
  4. Mantzoros C.S., Magkos F., Brinkoetter M. et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011; 301 (4): E567-E584. doi: 10.1152/ajpendo.00315.2011
  5. Coleman D.L. Effects of parabiosis of obese with diabetes and normal mice. Dlabetologla. 1973; 9: 294-8. doi: 10.1007/bf01221857
  6. Coleman D.L. A historical perspective on leptin. Nature Medicine. 2010; 16 (10): 1097-9. doi: 10.1038/nm1010-1097
  7. Ingalls A.M., Dickie M.M., Snel G.D. Obese, a new mutation in the house mouse. J Heredity. 1950; 41 (12): 317-8. doi: 10.1093/oxfordjournals.jhered. a106073
  8. Mayer J., Bates M.W., Dickie M.M. Hereditary diabetes in genetically obese mice. Science. 1951; 113 (2948): 746-7. DOI: 10.1126/ science.113.2948.746
  9. Tritos N.A., Mantzoros C.S. Leptin: its role in obesity and beyond. Dlabetologla. 1997; 40 (12): 1371-9. doi: 10.1007/s001250050838
  10. Castracane V.D., Henson M.C. The Obese (ob/ob) Mouse and the Discovery of Leptin. Leptin. Endocrine Updates. 2006; 25. doi: 10.1007/978-0-387-31416-7_1
  11. Fietta P. Focus on leptin, a pleiotropic hormone. Minerva Medlca. 2005; 96 (2): 65-75.
  12. Likuni N., Lam Q.L., Lu L. et al. Leptin and Inflammation. Curr Immunol Rev. 2008; 4 (2): 70-9. doi: 10.2174/157339508784325046
  13. Груздева O.B., Акбашева O.E., Дыпева Ю.А. и др. Адипокиновый и цито-киновый профили эпикардиальной и подкожной жировой ткани у пациентов с ишемической болезнью сердца. Бюллетень экспериментальной биологии и медицины. 2017; 163 (5): 560-3 [Gruzdeva O.V., Akbasheva О.Е., Dylev Y.A. et al. Adipokine and cytokine profiles of epicardial and subcutaneous adipose tissue in patients with coronary heart disease. Bulletin of Experimental Biology and Medicine. 2017;163 (5): 560-3 (in Russ.)].
  14. Harris R.B. Direct and indirect effects of leptin on adipocyte metabolism. Blochlm BlophysActa. 2014; 1842 (3): 414-23. doi: 10.1016/).bbadis.2013.05.009
  15. Poetsch M.S., Strano A., Guan K. Role of Leptin in Cardiovascular Diseases. Front Endocrinol. 2020; 11: 354. doi: 10.3389/fendo.2020.00354
  16. Miyoshi Y., Funahashi T., Tanaka S. et al. High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels. Int J Cancer. 2006; 118 (6): 1414-9. D0l:10.1002/ ijc.21543
  17. Farooqi I.S., Wangensteen Т., Collins S. et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007; 356 (3): 237-47. doi: 10.1056/NEJMoa063988
  18. Considine R.V., Sinha M.K., Heiman M.L. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996; 334: 292-5. doi: 10.1056/NEJM199602013340503
  19. Mercer J.G., Moar K.M., Hoggard N. et al. B219/OB-R 54JTR and leptin receptor gene-related protein gene expression in mouse brain and placenta: tissue-specific leptin receptor promoter activity. J Neuroendocrinol. 2000; 12: 649-55. doi: 10.1046/j.1365-2826.2000.00501 x
  20. Lee G.H., Proenca R., Montez J.M. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature. 1996; 379: 632-5. doi: 10.1038/379632a0
  21. Ge H., Huang L., Pourbahrami T. et al. Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors In vitro and In vivo. J Biol Chem. 2002; 277: 45898-903. doi: 10.1074/jbc.M205825200
  22. Seron K., Couturier C., Belouzard S. et al. Endospanins regulate a postinternalization step of the leptin receptor endocytic pathway. J Biol Chem. 2011; 286:17968-81. doi: 10.1074/jbc.M111.224857
  23. Uotani S., Bjorbaek C., Tornoe J. et al. Functional properties of leptin receptor isoforms: internalization and degradation of leptin and ligand-induced receptor downregulation. Diabetes. 1999; 48: 279-86. DOI: 10.2337/ diabetes.48.2.279
  24. Sweeney G. Leptin signaling. Cell Signal. 2002; 14: 655-63. DOI: 10.1016/ S0898-6568(02)00006-2
  25. Nakashima K., Narazaki М., Taga T. Leptin receptor (OB-R) oligomerizes with itself but not with its closely related cytokine signal transducer gp130. FEBS Lettrs. 1997; 403: 79-82. doi: 10.1016/S0014-5793(97)00013-6
  26. Dunn S.L., Bjornholm М., Bates S.H. et al. Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and suppressor of cytokine signaling 3. Mol Endocrinol. 2005; 19: 925-38. DOI: 10.121(Vme.2004-0353
  27. Hekerman P., Zeidler J., Bamberg-Lemper S. et al. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosines. FEBSJ. 2005; 272:109-19. doi: 10.1111/j.1432-1033.2004.04391.x
  28. Gong Y., Ishida-Takahashi R., Villanueva E.C. et al. The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J Biol Chem. 2007; 282: 31019-27. doi: 10.1074/jbc.M702838200
  29. Dunn S.L., Bjornholm М., Bates S.H. et al. Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and suppressor of cytokine signaling 3. Mol Endocrinol. 2005; 19: 925-38. DOI: 10.121(Vme.2004-0353
  30. Ren D., Li М., Duan C. et al. Identification of SH2-B as a key regulator of leptin sensitivity, energy balance, and body weight in mice. Cell Metab. 2005; 2: 95-104. doi: 10.1016/j.cmet.2005.07.004
  31. Kastin A.J., Pan W., Maness L.M. et al. Decreased transport of leptin across the blood-brain barrier in rats lacking the short form of the leptin receptor. Peptides. 1999; 20:1449-53. doi: 10.1016/S0196-9781 (99)00156-4
  32. Huang L., Wang Z., Li C. Modulation of circulating leptin levels by its soluble receptor. J Biol Chem. 2001; 276: 6343-9. doi: 10.1074/jbc.M009795200
  33. Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol. 2012; 3: 34. doi: 10.3389/fendo.2012.00034
  34. Romanova I.V., Derkach K.V., Mikhrina A.L. et al. The leptin, dopamine and serotonin receptors in hypothalamic POMC-neurons of normal and obese rodents. Neurochem Res. 2018; 43 (4): 821-37. doi: 10.1007/s11064-018-2485-z
  35. Banks W.A., DiPalma C.R., Farrell C.L. Impaired transport of leptin across the blood-brain barrier in obesity. Peptides. 1999; 20 (11): 1341-5. DOI: 10.1016/ s0196-9781(99)00139-4
  36. Van H.M., Compton D.S., France C.F. et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest. 1997; 99: 385-90. doi: 10.1172/JCI119171
  37. Halaas J.L., Boozer C., Blair-West J. et al. Physiological responseto longterm peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Scl USA. 1997; 94: 8878-83. doi: 10.1073/pnas.94.16.8878
  38. Faouzi М., Leshan R., Bjornholm M. et al. Differential accessibility of circulating leptin to individual hypothalamic sites. Endocrinology. 2007; 148: 5414-23. DOI: 10.1210/ en.2007-0655
  39. Banks W.A., Clever C.M., Farrell C.L. Partial saturation and regional variation in the blood-to-brain transport of leptin in normal weight mice. Am J Physiol Endocrinol Metab. 2000; 278 (6): E1158-1165. DOI: 10.1152/ ajpendo.2000.278.6.E1158
  40. Schwartz M.W., Woods S.C., Porte D. Jr., et al. Central nervous system control of food intake. Nature. 2000; 404 (6778): 661-71. doi: 10.1038/35007534
  41. Ottaway N., Mahbod P., Rivero B. et al. Diet-induced obese mice retain endogenous leptin action. Cell Metab. 2015; 21: 877-82. DOI: 10.1016/j. cmet.2015.04.015
  42. Pan W.W., Myers M.G. Leptin and the maintenance of elevated body weight. Nat Rev Neurosd. 2018; 19: 95-105. doi: 10.1038/nrn.2017.168
  43. Kleinert М., Kotzbeck P., Altendorfer-Kroath T. et al. Time-resolved hypothalamic open flow micro-perfusion reveals normal leptin transport across the blood-brain barrier in leptin resistant mice. Mol Metab. 2018; 13: 77-82. doi: 10.1016/j.molmet.2018.04.008
  44. Ozcan U., Yilmaz E., Ozcan L. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006; 313 (5790): 1137-40. doi: 10.1126/science.1128294
  45. Park S., Aintablian A., Coupe B. et al. The endoplasmic reticulum stress-autophagy pathway controls hypothalamic development and energy balance regulation in leptin-deficient neonates. Nat Commun. 2020: 11: 1914. doi: 10.1038/S41467-020-1562 4-y
  46. Hosoi Т., Yamaguchi R., Noji K. et al. Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress. EMBO Mol Med. 2014; 6: 335-46. doi: 10.1002/emmm.201303227
  47. Hosoi Т., Baba S., Ozawa K. Therapeutic potential of flurbiprofen against obesity in mice. Biochem Biophys Res Commun. 2014; 449:132-4. DOI: 10.1016/j. bbrc.2014.04.159
  48. Schulz C., Paulus K., Johren 0. et al. Intranasal leptin reduces appetite and induces weight lossin rats with diet-induced obesity (DIO). Endocrinology. 2012; 153:143-53. DOI: 10.1210 / en.2011-1586
  49. Hackl M.T., Furnsinn C., Schuh C.M. et al. Brain leptin reduces liver lipids by increasing hepatic triglyceride secretion and lowering lipogenesis. Nat Commun. 2019; 10:2717. doi: 10.1038/s41467-019-10684-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies