Перспективы использования местной антибиотикотерапии в лечении остеомиелита


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Обсуждаются современные методики лечения хронического остеомиелита путем доставки антибиотика непосредственно к очагу инфекции. Проанализированы перспективы разных материалов (полимеров, металлов, губок) в качестве средств транспортировки препаратов к измененной костной ткани. Указаны преимущества и недостатки каждой методики. Обозначены проблемы, которые необходимо решить в ближайшем будущем.

Полный текст

Доступ закрыт

Об авторах

В. Привольнев

Смоленский государственный медицинский университет

Email: vladislav.privolnev@gmail.com
кандидат медицинских наук

А. Родин

Смоленский государственный медицинский университет

кандидат медицинских наук

Р. Федоров

Смоленская областная клиническая больница

Д. Хвостов

Смоленская областная клиническая больница

Список литературы

  1. Qureshi A., Terrell L., Monroe W. et al. Antimicrobial biocompatible bioscaffolds for orthopaedic implants // J. Tissue Eng. Regen. Med. - 2014; 8 (5): 386-95.
  2. Привольнев В.В., Родин А.В., Каракулина Е.В. Местное применение антибиотиков в лечении инфекций костной ткани // Клин. микробиол. и антимикроб. химиотер. - 2012; 2: 118-31.
  3. Хвостов Д.Л., Привольнев В.В. Профилактика инфекционных осложнений в травматологии и ортопедии // Клин. микробиол. и антимикроб. химиотер. - 2014; 3: 168-75.
  4. McLaren A. Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections // Clin. Orthop. Relat. Res. - 2004; 427: 101-6.
  5. de Klaver P., Hendriks J., van Onzenoort H. et al. Gentamicin serum concentrations in patients with gentamicin-PMMA beads for infected hip joints: a prospective observational cohort study // Ther. Drug. Monit. - 2012; 34 (1): 67-71.
  6. Hilbrig F., Freitag R. Hydroxyapatite in bioprocessing. In: Subramanian G., ed. Biopharmaceutical production technology. Vol. 1 / Weinheim: Wiley-VCH, 2012; 283-331.
  7. Eppell S., Tong W., Katz J. et al. Shape and size of isolated bone mineralites measured using atomic force microscopy // J. Orthop. Res. - 2001; 19: 1027-34.
  8. Hofmann M., Mohammed A., Perrie Y. et al. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities // Acta Biomater. - 2009; 5: 43-9.
  9. Ambard A., Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties // J. Prosthodont. - 2006; 15: 321-8.
  10. Rainer A., Centola M., Spadaccio C. et al. Comparative study of different techniques for the sterilization of poly-L-lactide electrospun microfibers: effectiveness vs. material degradation // Int. J. Artif. Organs. - 2010; 33 (2): 76-85.
  11. Rauschmann M., Wichelhaus T., Stirnal V. et al. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections // Biomaterials. - 2005; 26 (15): 2677-84.
  12. Vilar G., Tulla-Puche J., Albericio F. Polymers and drug delivery systems // Curr. Drug. Deliv. - 2012; 9 (4): 367-94.
  13. Sabir M., Xu X. A review of biodegradable polymeric materials for bone tissue engineering applications // J. Mater. Sci. - 2009; 44: 5713-24.
  14. Kluin O., van der Mei H., Busscher H. et al. Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis // Expert Opin. Drug. Deliv. - 2013; 10 (3): 341-51.
  15. Moskowitz J., Blaisse M., Samuel R. et al. The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model // Biomaterials. - 2010; 31 (23): 6019-30.
  16. Tiainen J., Soini Y., Suokas E. et al. Tissue reactions to bioabsorbable ciprofloxacin-releasing polylactide-polyglycolide 80/20 screws in rabbits’ cranial bone // J. Mater. Sci. Mater. Med. - 2006; 17 (12): 1315-22.
  17. Lemaire S., Van Bambeke F., Pierard D. et al. Activity of fusidic acid against extracellular and intracellular Staphylococcus aureus: influence of pH and comparison with linezolid and clindamycin // Clin. Infect. Dis. - 2011; 52 (Suppl. 7): S493-8503.
  18. Ouédraogo M., Semdé R., Somé I. et al. Monoolein-water liquid crystalline gels of gentamicin as bioresorbable implants for the local treatment of chronic osteomyelitis: in vitro characterization // Drug Dev. Ind. Pharm. - 2008; 34 (7): 753-60.
  19. Xiong M., Li Y., Bao Y. et al. Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery // Adv. Mater. - 2012; 24 (46): 6175-80.
  20. Semdé R., Gondi R., Sombié B. et al. Effect of hydroxyapatite on the physicochemical characteristics of a gentamicin-loaded monoolein gel intended to treat chronic osteomyelitis // J. Adv. Pharm. Technol. Res. - 2012; 3 (2): 100-5.
  21. Aquino R., Auriemma G., Mencherini T. et al. Design and production of gentamicin/dextrans microparticles by supercritical assisted atomisation for the treatment of wound bacterial infections // Int. J. Pharm. - 2013; 440 (2): 188-94.
  22. Weszl M., Skaliczki G., Cselenyak A. et al. Freeze-dried human serum albumin improves the adherence and proliferation of mesenchymal stem cells on mineralized human bone allografts // J. Orthop. Res. - 2012; 30 (3): 48996.
  23. Zhou J., Fang T., Wen J. et al. Silk coating on poly(ε-caprolactone) microspheres for the delayed release of vancomycin // J. Microencapsul. - 2011; 28 (2): 99-107.
  24. Ziv K., Nuhn H., Ben-Haim Y. et al. A tunable silk-alginate hydrogel scaffold for stem cell culture and transplantation // Biomaterials. - 2014; 35: 3736-43.
  25. Orhan Z., Cevher E., Mülazimoglu L. et al. preparation of ciprofloxacin hydrochloride-loaded chitosan and pectin microspheres: their evaluation in an animal osteomyelitis model // J. Bone Joint Surg. Br. - 2006; 88 (2): 270-5.
  26. Huneault L., Lussier B., Dubreuil P. et al. Prevention and treatment of experimental osteomyelitis in dogs with ciprofloxacin-loaded crosslinked high amylose starch implants // J. Orthop. Res. - 2004; 22 (6): 1351-7.
  27. Xing J., Hou T., Luobu B. et al. Anti-infection tissue engineering construct treating osteomyelitis in rabbit tibia // Tissue Eng. Part A. - 2013; 19 (1-2): 255-63.
  28. Knaepler H. Local application of gentamicin-containing collagen implant in the prophylaxis and treatment of surgical site infection in orthopaedic surgery // Int. J. Surg. - 2012; 10 (Suppl. 1): S15-820.
  29. Mendel V., Simanowski H., Scholz H. et al. Therapy with gentamicin-PMMA beads, gentamicin-collagen sponge, and cefazolin for experimental osteomyelitis due to Staphylococcus aureus in rats // Arch. Orthop. Trauma Surg. - 2005; 125 (6): 363-8.
  30. Chaudhary S., Sen R., Saini U. et al. Use of gentamicin-loaded collagen sponge in internal fixation of open fractures // Chin. J. Traumatol. - 2011; 14 (4): 209-14.
  31. Browne S., Zeugolis D., Pandit A. Collagen: finding a solution for the source // Tissue Eng. Part A. - 2013; 19 (13-14): 1491-4.
  32. Hou J., Wang J., Cao L. et al. Segmental bone regeneration using rhB-MP-2-loaded collagen/chitosan microspheres composite scaffold in a rabbit model // Biomed. Mat. - 2012; 7: 035002.
  33. Kundu B., Nandi S., Dasgupta S. et al. Macro-to-micro porous special bioactive glass and ceftriaxone-sulbactam composite drug delivery system for treatment of chronic osteomyelitis: an investigation through in vitro and in vivo animal trial // J. Mater. Sci. Mater. Med. - 2011; 22 (3): 705-20.
  34. Pavelic K., Hadzija M. Medical applications of zeolites. In: Auerbach S.M.; Carrado, K.A.; Dutta, P.K., editors. Handbook of zeolite science and technology / New York: Marcel Dekker, 2005; p. 1460.
  35. Привольнев В.В., Забросаев В.С., Даниленков Н.В. Препараты серебра в местном лечении инфицированных ран // Вестник Смоленской государственной медицинской академии. - 2015; 3: 85-91.
  36. Becker R. Silver ions in the treatment of local infections // Met. Based Drugs. - 1999; 6: 311-4.
  37. Gulati K., Aw M., Losic D. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection // Nanoscale Res. Lett. -2011; 6: 571.
  38. Popat K., Eltgroth M., Latempa T. et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes // Biomaterials. - 2007; 28 (32): 4880-8.
  39. Harris L., Meredith D., Eschbach L. et al. Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials // J. Mater. Sci. Mater. Med. - 2007; 18 (6): 1151-6.
  40. Hirota M., Hayakawa T., Yoshinari M. et al. Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation // Int. J. Oral Maxillofac. Surg. - 2012; 41 (10): 1304-9.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах