Diagnosis of Parkinson's disease by biomedical imaging methods on the example of a clinical case

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Worldwide, Parkinson's disease (PD; primary Parkinsonism) is ahead of other neurological disorders in terms of the growth rate of disability and mortality. Despite significant progress in the study of the etiopathogenesis of PD, early diagnosis is a difficult clinical task. The long latent phase of the disease and the absence of reliable laboratory markers often cause a delay in diagnostic neuroimaging, which, together with the potential unwillingness of the radiologist to see changes characteristic of the neurodegenerative process, leads to untimely diagnosis and, as a consequence, a delay in the appointment of therapy.

This article provides a literary review of generally recognized visualization patterns of the disease in accordance with modern concepts, and also discusses the issues of differential diagnosis of PD with the most common Parkinsonism-plus syndromes. A clinical case of the diagnosis of Parkinson's disease in a 93-year-old patient by structural magnetic resonance imaging is presented.

Full Text

Restricted Access

About the authors

V. V. Ryazanov

Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia

Author for correspondence.
Email: val9126@mail.ru
ORCID iD: 0000-0002-0037-2854

Doctor of Medical Sciences, Associate Professor

Russian Federation, Saint Petersburg

V. P. Kutsenko

Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: val9126@mail.ru
ORCID iD: 0000-0001-9755-1906

Candidate of Medical Sciences

Russian Federation, Saint Petersburg

R. A Postanogov

Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: val9126@mail.ru
ORCID iD: 0000-0002-0523-9411
Russian Federation, Saint Petersburg

P. V. Seliverstov

V.A. Almazov National Medical Research Center; S.M. Kirov Military Medical Academy

Email: val9126@mail.ru
ORCID iD: 0000-0001-5623-4226

Candidate of Medical Sciences

Russian Federation, Saint Petersburg; Saint Petersburg

M. R. Gafiatulin

Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: val9126@mail.ru
ORCID iD: 0000-0002-5224-1717
Russian Federation, Saint Petersburg

References

  1. Pringsheim T., Jette N., Frolkis A et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014; 29: 1583–90. doi: 10.1002/mds.25945
  2. Grimes D., Fitzpatrick M., Gordon J. et al. Canadian guideline for Parkinson disease. CMAJ. 2019; 191 (36): E989-E1004. doi: 10.1503/cmaj.181504
  3. Parkinson’s disease in adults. National Institute for Health and Care Excellence. URL: https://www.nice.org.uk/guidance/ng71
  4. Клинические рекомендации. Неврология: Болезнь Паркинсона, вторичный паркинсонизм и другие заболевания, проявляющиеся синдромом паркинсонизма. Ред. совет: Всероссийское общество неврологов, Ассоциация нейрохирургов России. М.: ГЭОТАР-Медиа, 2021 [Klinicheskie rekomendatsii. Nevrologiya: Bolezn' Parkinsona, vtorichnyi parkinsonizm i drugie zabolevaniya, proyavlyayushchiesya sindromom parkinsonizma. Red. sovet: Vserossiiskoe obshchestvo nevrologov, Assotsiatsiya neirokhirurgov Rossii. M.: GEOTAR-Media, 2021 (in Russ.)].
  5. Dickson D/W. Neuropathology of Parkinson disease. Parkinsonism Relat Disord. 2018; 46 (Suppl. 1) S30-S33. doi: 10.1016/j.parkreldis.2017.07.033
  6. Ward R.J., Zucca F.A., Duyn J.H. et al The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014; 13 (10): 1045–60. doi: 10.1016/S1474-4422(14)70117-6
  7. Damier P., Hirsch E.C., Agid Y. et al The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain. 1999; 122: 1421–36. doi: 10.1093/brain/122.8.1421
  8. Lehéricy S., Bardinet E., Poupon C. et al. 7 Tesla magnetic resonance imaging. A closer look at substantia nigra anatomy in Parkinson’s disease. Mov Disord. 2014; 29: 1574–81. doi: 10.1002/mds.26043
  9. Reiter E., Mueller C., Pinter B. et al. Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism. Mov Disord. 2015; 30: 1068–76. doi: 10.1002/mds.26171
  10. Schwarz S.T., Xing Y., Tomar P. et al. In vivo assessment of brainstem depigmentation in Parkinson disease: potential as a severity marker for multicenter studies. Radiology. 2017; 283 (3): 789–98. doi: 10.1148/radiol.2016160662
  11. Bae Y.J., Kim J.-M., Sohn C.-H. et al. Imaging the Substantia Nigra in Parkinson Disease and Other Parkinsonian Syndromes. Radiology. 2021; 300 (2): 260–78. doi: 10.1148/radiol.2021203341
  12. Meijer F.J.A., Goraj B., Bloemc B.R. et al. Clinical application of brain MRI in the diagnostic work-up of parkinsonism. J Parkinsons Dis. 2017; 7: 211–7. doi: 10.3233/JPD-150733
  13. Осборн А.Г., Зальцман К.Л., Завери М.Д. Лучевая диагностика. Головной мозг. 3-е изд. Пер. с англ. М.: Издательство Панфилова, 2018; 1194 с. [Osborn A.G., Salzman K.L., Jhaveri M.D. et al. Diagnostic Imaging. Brain. 3rd ed. Transl. from English. M.: Izdatel'stvo Panfilova, 2018; 1194 p. (in Russ.)].
  14. Öz G., Tkáč I. Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical proofing at 4 T: validation in the cerebellum and brainstem. Magn Reson Med. 2011; 65 (4): 901–10. doi: 10.1002/mrm.22708
  15. Tan W.Q., Yeoh C.S., Rumpel H. et al. Deterministic Tractography of the Nigrostriatal-Nigropallidal Pathway in Parkinson’s Disease. Sci Rep. 2015; 5: 17283. doi: 10.1038/srep17283
  16. Kenneth N.J., Chen B., Tomas M.B. et al. Interpreting 123I-ioflupane dopamine transporter scans using hybrid scores. Eur J Hybrid Imaging. 2018; 2 (1): 10. doi: 10.1186/s41824-018-0028-0
  17. Iwabuchi Y., Kameyam, M., Matsusaka Y. et al. A diagnostic strategy for Parkinsonian syndromes using quantitative indices of DAT SPECT and MIBG scintigraphy: an investigation using the classification and regression tree analysis. Eur J Nucl Med Mol Imaging. 2021; 48: 1833–41. doi: 10.1007/s00259-020-05168-0
  18. Nocker M., Seppi K., Donnemiller E. et al. Progression of dopamine transporter decline in patients with the Parkinson variant of multiple system atrophy: a voxel-based analysis of [123I]β-CIT SPECT. Eur J Nucl Med Mol Imaging. 2012; 39: 1012–20. doi: 10.1007/s00259-012-2100-5
  19. Seppi K., Scherfler C., Donnemiller E. et al. Topography of Dopamine Transporter Availability in Progressive Supranuclear Palsy: A Voxelwise [123I]β-CIT SPECT Analysis. Arch Neurol. 2006; 63 (8): 1154–60. doi: 10.1001/archneur.63.8.1154
  20. Oustwani C.S., Korutz A.W., Lester M.S. et al. Can loss of the swallow tail sign help distinguish between Parkinson Disease and the Parkinson-Plus syndromes? Clin Imaging. 2017; 44: 66–9. doi: 10.1016/j.clinimag.2017.04.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Anatomical formations of the midbrain are normal (macropreparation): 1 – the reticular part of the substantia nigra; 2 – the compact part of the substantia nigra; 3 – the red nucleus; 4 – the motor nucleus of the oculomotor nerve; 5 – gray matter near the aqueduct; 6 – the Sylvian aqueduct; 7 – the medial longitudinal bundle; 8 – the superior colliculus quadrilateral; 9 – the spinothalamic tract; 10 – the medial lemniscus; 11 – medial geniculate body; 12 – the legs of the brain

Download (111KB)
3. Fig. 2. Dovetail symptom (diagram): 1 – nigrosome 1; 2 – substantia nigra; 3 – medial lemniscus; 4 – red nucleus; 5 – mastoid bodies; 6 – interpeduncular fossa (Selikhova M.V., Katunina E.A., Voun A., 2019)

Download (71KB)
4. Fig. 3. MRI of the brain of patient Z.: a – T2 FLAIR WI, axial section at the level of semioval centers: small single lacunae (arrows), drain hyperintensive zones in white matter (asterisks); б – T2 WI, axial section at the level of basal nuclei: multiple expanded perivascular spaces (arrows), expansion liquor spaces of a substitutive nature (asterisks); в – T2 FLAIR WI, axial section at the level of the legs of the brain: smoothness of differentiation of the compact part of the emergency, a decrease in the intensity of the MR signal from it, more to the left (arrow) with a preserved volume of midbrain structures; г – T2 WI, axial section at the level of the legs of the brain: similar changes (arrow) with a preserved volume of structures the midbrain

Download (36KB)

Copyright (c) 2023 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies