Neuroplasticity in the use of a human glucone-like peptide-1 analog in an obese patient: clinical case

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This clinical case reflects a variety of symptoms in obesity with central nervous system involvement. At the same time, the use of liraglutide in an obese patient resulted not only in the reduction of visceral fat area, but also in the improvement of cognitive functions, reduction of neuropilin, and as a consequence, reversibility of neurometabolism and functional changes in the brain. Literature sources from international and Russian databases for 5 years were used to compare the results.

Full Text

Restricted Access

About the authors

M. V. Matveeva

Siberian State Medical University, Ministry of Health of Russia

Email: oleynikoa@mail.ru
ORCID iD: 0000-0001-9966-6686

Professor, MD

Russian Federation, Tomsk

Yu. G. Samoilova

Siberian State Medical University, Ministry of Health of Russia

Email: oleynikoa@mail.ru
ORCID iD: 0000-0002-2667-4842

Professor, MD

Russian Federation, Tomsk

O. A. Oleynik

Siberian State Medical University, Ministry of Health of Russia

Email: oleynikoa@mail.ru
ORCID iD: 0000-0002-2915-384X

Candidate of Medical Sciences

Russian Federation, Tomsk

D. A. Kudlay

I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia; M.V. Lomonosov Moscow State University

Email: oleynikoa@mail.ru
ORCID iD: 0000-0003-1878-4467

Professor, Corresponding member of the Russian Academy of Sciences, MD

Russian Federation, Moscow; Moscow

D. V. Podchinenova

Siberian State Medical University, Ministry of Health of Russia

Author for correspondence.
Email: oleynikoa@mail.ru
ORCID iD: 0000-0001-6212-4568

Candidate of Medical Sciences

Russian Federation, Tomsk

D. G. Apalkov

Siberian State Medical University, Ministry of Health of Russia

Email: oleynikoa@mail.ru
Russian Federation, Tomsk

References

  1. Mayoral L.P., Andrade G.M., Mayoral E.P. et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J Med Res. 2020; 151 (1): 11–21. doi: 10.4103/ijmr.IJMR_1768_17
  2. Hruby A., Hu F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics. 2015; 33 (7): 673–89. doi: 10.1007/s40273-014-0243-x
  3. Ortega F.B., Mora-Gonzalez J., Cadenas-Sanchez C. et al. Effects of an Exercise Program on Brain Health Outcomes for Children With Overweight or Obesity: The ActiveBrains Randomized Clinical Trial. JAMA Netw Open. 2022; 5 (8): e2227893. doi: 10.1001/jamanetworkopen.2022.27893
  4. Selman A., Burns S., Reddy A.P. et al. The Role of Obesity and Diabetes in Dementia. Int J Mol Sci. 2022; 23 (16): 9267. doi: 10.3390/ijms23169267
  5. Benomar Y., Taouis M. Molecular Mechanisms Underlying Obesity-Induced Hypothalamic Inflammation and Insulin Resistance: Pivotal Role of Resistin/TLR4 Pathways. Front Endocrinol (Lausanne). 2019; 10: 140. doi: 10.3389/fendo.2019.00140
  6. Flores-Cordero J.A., Pérez-Pérez A., Jiménez-Cortegana C. et al. Obesity as a Risk Factor for Dementia and Alzheimer's Disease: The Role of Leptin. Int J Mol Sci. 2022; 23 (9): 5202. doi: 10.3390/ijms23095202
  7. Cui Q.N., Stein L.M., Fortin S.M. et al. The role of glia in the physiology and pharmacology of glucagon-like peptide-1: implications for obesity, diabetes, neurodegeneration and glaucoma. Br J Pharmacol. 2022; 179 (4): 715–26. doi: 10.1111/bph.15683
  8. Nakanishi Y., Kang S., Kumanogoh A. Axon guidance molecules in immunometabolic diseases. Inflamm Regen. 2022; 42 (1): 5. doi: 10.1186/s41232-021-00189-0
  9. Al-Thomali A.W., Al-Kuraishy H.M., Al-Gareeb A.I. et al. Role of Neuropilin 1 in COVID-19 Patients with Acute Ischemic Stroke. Biomedicines. 2022; 10 (8): 2032. doi: 10.3390/biomedicines10082032
  10. Дедов И.И., Шестакова М.В., Мельниченко Г.А. и др. Междисциплинарные клинические рекомендации «Лечение ожирения и коморбидных заболеваний». Ожирение и метаболизм. 2021; 18 (1): 5–99 [Dedov I.I., Shestakova M.V., Melnichenko G.A. et al. Interdisciplinary clinical practice guidelines "Management of obesity and its comorbidities". Obesity and metabolism. 2021; 18 (1): 5–99 (in Russ.)]. doi: 10.14341/omet12714
  11. Caballero B. Humans against Obesity: Who Will Win? Adv Nutr. 2019; 10 (suppl_1): S4–S9. doi: 10.1093/advances/nmy055
  12. Melchior V., Fuchs S., Scantamburlo G. Vignette thérapeutique de l’étudiant. Obésité et troubles du comportement alimentaire [Obesity and eating disorders]. Rev Med Liege. 2021; 76 (2): 134–9 (in French).
  13. Ho Y.C., Srinivasan R.S. Lymphatic Vasculature in Energy Homeostasis and Obesity. Front Physiol. 2020; 11: 3. doi: 10.3389/fphys.2020.00003
  14. Song S., Guo R., Mehmood A. et al. Liraglutide attenuate central nervous inflammation and demyelination through AMPK and pyroptosis-related NLRP3 pathway. CNS Neurosci Ther. 2022; 28 (3): 422–34. doi: 10.1111/cns.13791
  15. Drucker D.J. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab. 2022; 57: 101351. doi: 10.1016/j.molmet.2021.101351
  16. Knudsen L.B., Lau J. The Discovery and Development of Liraglutide and Semaglutide. Front Endocrinol (Lausanne). 2019; 10: 155. doi: 10.3389/fendo.2019.00155
  17. Varkevisser R.D.M., van Stralen M.M., Kroeze W. et al. Determinants of weight loss maintenance: a systematic review. Obes Rev. 2019; 20 (2): 171–211. doi: 10.1111/obr.12772
  18. Val-Laillet D., Aarts E., Weber B. et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015; 8: 1–31. doi: 10.1016/j.nicl.2015.03.016

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Changes in the standard deviation score of body mass index from birth to 18 years of age

Download (18KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies