Types of effects of SARS-CoV-2 on the human body: from coagulopathy to cytokine storm
- Authors: Nikolaychuk K.M.1,2, Yakovleva S.A.1, Shrayner E.V.1,3,4,5, Platonova P.Y.1, Novikova M.F.1, Tumas A.S.1, Vergunova E.E.1, Lukichev D.A.1, Sergeev D.A.1, Khavkin A.I.6,7, Pokushalov E.A.3,4, Kudlay D.A.8,9
-
Affiliations:
- Novosibirsk National Research State University
- Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
- Center for New Medical Technologies
- S.LAB PHARM (Soloways)
- Research and Clinical Institute of Childhood
- Belgorod State University
- Sechenov First Moscow State Medical University
- Lomonosov Moscow State University
- Issue: Vol 36, No 3 (2025)
- Pages: 11-16
- Section: Lecture
- URL: https://journals.eco-vector.com/0236-3054/article/view/678067
- DOI: https://doi.org/10.29296/25877305-2025-03-02
- ID: 678067
Cite item
Abstract
Review focuses on the clinical presentation and pathogenesis of COVID-19, particularly in the context of the interaction between SARS-CoV-2 virus and angiotensin-converting enzyme II (ACE-II), which plays a key role in viral entry into host cells. The article details the mechanisms underlying cytokine storm, coagulopathy and other important aspects of severe disease, including increased expression of pro-inflammatory cytokines and alterations in the haemostasis system. This article analyses the consequences of abnormal activation of the immune system leading to acute respiratory distress syndrome, disseminated intravascular coagulation and multi-organ failure. In addition, the role of anticoagulant therapy in the prevention and treatment of thrombotic complications is discussed. The study emphasises the need for an individual approach in the treatment and prevention of COVID-19 depending on the severity of the disease and other clinical parameters.
Full Text

About the authors
K. M. Nikolaychuk
Novosibirsk National Research State University; Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0001-8364-6066
SPIN-code: 9085-8093
Russian Federation, Novosibirsk; Novosibirsk
S. A. Yakovleva
Novosibirsk National Research State University
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0003-0656-5806
Russian Federation, Novosibirsk
E. V. Shrayner
Novosibirsk National Research State University; Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Center for New Medical Technologies; S.LAB PHARM (Soloways)
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0003-3606-4068
SPIN-code: 1089-6080
Candidate of Medical Sciences
Russian Federation, Novosibirsk; Novosibirsk; Novosibirsk; NovosibirskP. Ya. Platonova
Novosibirsk National Research State University
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0004-1880-9585
SPIN-code: 9529-4061
Russian Federation, Novosibirsk
M. F. Novikova
Novosibirsk National Research State University
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0008-7479-8277
SPIN-code: 2719-9753
Russian Federation, Novosibirsk
A. S. Tumas
Novosibirsk National Research State University
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0004-1138-6049
SPIN-code: 2808-4138
Russian Federation, Novosibirsk
E. E. Vergunova
Novosibirsk National Research State University
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0003-0793-4236
SPIN-code: 7846-8500
Russian Federation, Novosibirsk
D. A. Lukichev
Novosibirsk National Research State University
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0000-5888-0651
Russian Federation, Novosibirsk
D. A. Sergeev
Novosibirsk National Research State University
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0007-9699-233X
Russian Federation, Novosibirsk
A. I. Khavkin
Research and Clinical Institute of Childhood; Belgorod State University
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0001-7308-7280
SPIN-code: 6070-9473
MD, Professor
Russian Federation, Moscow; BelgorodE. A. Pokushalov
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Center for New Medical Technologies
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0002-9494-4234
SPIN-code: 1032-1810
Corresponding Member of the Russian Academy of Sciences, MD, Professor
Russian Federation, Novosibirsk; NovosibirskD. A. Kudlay
Sechenov First Moscow State Medical University; Lomonosov Moscow State University
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0003-1878-4467
SPIN-code: 4129-7880
Corresponding Member of the Russian Academy of Sciences, MD
Russian Federation, Moscow; MoscowReferences
- Zhu N., Zhang D., Wang W. et al. China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 382 (8): 727–33. doi: 10.1056/NEJMoa2001017
- Guo Y., Cao Q., Hong Z. et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020; 7 (1): 11. doi: 10.1186/s40779-020-00240-0
- Li W., Moore M., Vasilieva N. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426 (6965): 450–4. doi: 10.1038/nature02145
- Zhou P., Yang X., Wang X. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579 (7798): 270–3. doi: 10.1038/s41586-020-2012-7
- Zhang H., Li H., Lyu J. et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. Int J Infect Dis. 2020; 96: 19–24. doi: 10.1016/j.ijid.2020.04.027
- Wrapp D., Wang N., Corbett K. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367 (6483): 1260–3. doi: 10.1126/science.abb2507
- Zou X., Chen K., Zou J. et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020; 14 (2): 185–92. doi: 10.1007/s11684-020-0754-0
- Zhang H., Penninger J., Li Y., Zhong N. et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46 (4): 586–90. doi: 10.1007/s00134-020-05985-9
- Wang E., Mao T., Klein J. et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021; 595 (7866): 283–8. doi: 10.1038/s41586-021-03631-y
- Liu K., Fang Y., Deng Y. et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020; 133 (9): 1025–31. doi: 10.1097/CM9.0000000000000744
- Гриневич В.Б., Лазебник Л.Б., Кравчук Ю.А. и др. Поражения органов пищеварения при постковидном синдроме. Клинические рекомендации. Экспериментальная и клиническая гастроэнтерология. 2022; 12: 4–68 [Grinevich V.B., Lazebnik L.B., Kravchuk Yu.A. et al. Gastrointestinal disorders in post-COVID syndrome. Clinical guidelines. Experimental and Clinical Gastroenterology. 2022; 12: 4–68 (in Russ.)]. doi: 10.31146/1682-8658-ecg-208-12-4-68
- Smith J., Sausville E., Girish V. et al. Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Dev Cell. 2020; 53 (5): 514–529.e3. doi: 10.1016/j.devcel.2020.05.012
- Pinto B., Oliveira A., Singh Y. et al. ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19. J Infect Dis. 2020; 222 (4): 556–63. doi: 10.1093/infdis/jiaa332
- Guan W., Ni Z., Hu Y. et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382 (18): 1708–20. doi: 10.1056/NEJMoa2002032
- Shereen M., Khan S., Kazmi A. e al. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020; 24: 91–8. doi: 10.1016/j.jare.2020.03.005
- Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181 (2): 271–280.e8. doi: 10.1016/j.cell.2020.02.052
- Onofrio L., Caraglia M., Facchini G. et al. Toll-like receptors and COVID-19: a two-faced story with an exciting ending. Future Sci OA. 2020; 6 (8): FSO605. doi: 10.2144/fsoa-2020-0091
- Lei X., Dong X., Ma R. et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun. 2020; 11 (1): 3810. doi: 10.1038/s41467-020-17665-9
- Park A., Iwasaki A. Type I and Type III Interferons - Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host Microbe. 2020; 27 (6): 870–8. doi: 10.1016/j.chom.2020.05.008
- Chan J., Kok K., Zhu Z. et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020; 9 (1): 221–36. doi: 10.1080/22221751.2020.1719902
- Xia H., Cao Z., Xie X. et al. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep. 2020; 33 (1): 108234. doi: 10.1016/j.celrep.2020.108234
- Wang D., Hu B., Hu C. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061–9. doi: 10.1001/jama.2020.1585
- Cevik M., Marcus J., Buckee C. et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmission Dynamics Should Inform Policy. Clin Infect Dis. 2021; 73 (Suppl 2): S170–S176. doi: 10.1093/cid/ciaa1442
- Кудлай Д.А., Широбоков Я.Е., Гладунова Е.П. и др. Диагностика COVID-19. Способы и проблемы обнаружения вируса SARS-COV-2 в условиях пандемии. Врач. 2020; 31 (8): 5–10 [Kudlay D.A., Shirobokov Y.E., Gladunova E.P. et al. Diagnosis of COVID-19. Methods and problems of virus SARS-CoV-2 detection under pandemic conditions. Vrach. 2020; 31 (8): 5–10 (in Russ.)]. doi: 10.29296/25877305-2020-08-01
- Хабибулина М.М., Баженова О.В., Шамилов М.Д. Профессиональное выгорание у врачей после пандемии COVID-19. Врач. 2024; 35 (6): 68–72 [Khabibulina M., Bazhenova O., Shamilov M. Occupational burnout in physicians after the COVID-19 pandemic. Vrach. 2024; 35 (6): 68–72 (in Russ.)]. doi: 10.29296/25877305-2024-06-13
- Mehta P., McAuley D., Brown M. et al. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10229): 1033–4. doi: 10.1016/S0140-6736(20)30628-0
- Jamilloux Y., Henry T., Belot A. et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020; 19 (7): 102567. doi: 10.1016/j.autrev.2020.102567
- Sun X., Wang T., Cai D. et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020; 53: 38–42. doi: 10.1016/j.cytogfr.2020.04.002
- Hirano T., Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020; 52 (5): 731–3. doi: 10.1016/j.immuni.2020.04.003
- Eguchi S., Kawai T., Scalia R. et al. Understanding Angiotensin II Type 1 Receptor Signaling in Vascular Pathophysiology. Hypertension. 2018; 71 (5): 804–10. doi: 10.1161/HYPERTENSIONAHA.118.10266
- Murakami M., Kamimura D., Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity. 2019; 50 (4): 812–31. doi: 10.1016/j.immuni.2019.03.027
- Savchenko A.A., Tikhonova E., Kudryavtsev I. et al. TREC/KREC levels and T and B lymphocyte subpopulations in COVID-19 patients at different stages of the disease. Viruses. 2022; 14 (3): 646. doi: 10.3390/v14030646
- Moore J., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020; 368 (6490): 473–4. doi: 10.1126/science.abb8925
- Wu Z., McGoogan J. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–42. doi: 10.1001/jama.2020.2648
- Gandhi R., Lynch J., Del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020; 383 (18): 1757–66. doi: 10.1056/NEJMcp2009249
- Aggarwal S., Garcia-Telles N., Aggarwal G. et al. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): Early report from the United States. Diagnosis (Berl). 2020; 7 (2): 91–6. doi: 10.1515/dx-2020-0046
- Ginsburg A., Klugman K. COVID-19 pneumonia and the appropriate use of antibiotics. Lancet Glob Health. 2020; 8 (12): e1453–e1454. doi: 10.1016/S2214-109X(20)30444-7
- Schaefer I., Padera R., Solomon I. et al. In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19. Mod Pathol. 2020; 33 (11): 2104–14. doi: 10.1038/s41379-020-0595-z
- Maiese A., Frati P., Del Duca F. et al. Myocardial Pathology in COVID-19-Associated Cardiac Injury: A Systematic Review. Diagnostics (Basel). 2021; 11 (9): 1647. doi: 10.3390/diagnostics11091647
- Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. doi: 10.1016/S0140-6736(20)30183-5
- Kudlay D., Kofiadi I., Khaitov M. Peculiarities of the T cell immune response in COVID-19. Vaccines. 2022; 10 (2): 242. doi: 10.3390/vaccines10020242
- Domingo P., Mur I., Pomar V. et al. The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine. 2020; 58: 102887. doi: 10.1016/j.ebiom.2020.102887
- Сироткина О.В., Ермаков А.И., Гайковая Л.Б. и др. Микрочастицы клеток крови у больных COVID-19 как маркер активации системы гемостаза. Тромбоз, гемостаз и реология. 2020; 82 (4): 35–40 [Sirotkina O.V., Ermakov A.I., Gaykovaya L.B. et al. Microparticles of blood cells in patients with COVID-19 as a marker of hemostasis activation. Tromboz, Gemostaz i Reologia. 2020; 82 (4): 35–40 doi: 10.25555/THR.2020.4.0943 (in Russ.)].
- Tang N., Li D., Wang X. et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18 (4): 844–7. doi: 10.1111/jth.14768
- Fox S., Akmatbekov A., Harbert J. et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020; 8 (7): 681–6. doi: 10.1016/S2213-2600(20)30243-5
- Calabrese L. Cytokine storm and the prospects for immunotherapy with COVID-19. Cleve Clin J Med. 2020; 87 (7): 389–93. doi: 10.3949/ccjm.87a.ccc008
- Conway E., Pryzdial E. Is the COVID-19 thrombotic catastrophe complement-connected? J Thromb Haemost. 2020; 18 (11): 2812–22. doi: 10.1111/jth.15050
- Iba T., Levy J., Warkentin T. et al. Scientific and Standardization Committee on DIC, and the Scientific and Standardization Committee on Perioperative and Critical Care of the International Society on Thrombosis and Haemostasis. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019; 17 (11): 1989–94. doi: 10.1111/jth.14578
- Thachil J., Tang N., Gando S. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020; 18 (5): 1023–6. doi: 10.1111/jth.14810
- Бородулина Е.А., Широбоков Я.Е., Гладунова Е.П. и др. Диагностика и фармакотерапия вирус-ассоциированных поражений легких. Клиническая фармакология и терапия. 2020; 29 (3): 61–6 [Borodulina E.A., Shirobokov Y.E., Gladunova E.P. et al. Virus-associated lung disease. Klinicheskaya farmakologiya i terapiya. 2020; 29 (3): 61–6 (in Russ.)]. doi: 10.32756/0869-5490-2020-3-61-66
Supplementary files
