Types of effects of SARS-CoV-2 on the human body: from coagulopathy to cytokine storm

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Review focuses on the clinical presentation and pathogenesis of COVID-19, particularly in the context of the interaction between SARS-CoV-2 virus and angiotensin-converting enzyme II (ACE-II), which plays a key role in viral entry into host cells. The article details the mechanisms underlying cytokine storm, coagulopathy and other important aspects of severe disease, including increased expression of pro-inflammatory cytokines and alterations in the haemostasis system. This article analyses the consequences of abnormal activation of the immune system leading to acute respiratory distress syndrome, disseminated intravascular coagulation and multi-organ failure. In addition, the role of anticoagulant therapy in the prevention and treatment of thrombotic complications is discussed. The study emphasises the need for an individual approach in the treatment and prevention of COVID-19 depending on the severity of the disease and other clinical parameters.

Full Text

Restricted Access

About the authors

K. M. Nikolaychuk

Novosibirsk National Research State University; Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0001-8364-6066
SPIN-code: 9085-8093
Russian Federation, Novosibirsk; Novosibirsk

S. A. Yakovleva

Novosibirsk National Research State University

Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0003-0656-5806
Russian Federation, Novosibirsk

E. V. Shrayner

Novosibirsk National Research State University; Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Center for New Medical Technologies; S.LAB PHARM (Soloways)

Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0003-3606-4068
SPIN-code: 1089-6080

Candidate of Medical Sciences

Russian Federation, Novosibirsk; Novosibirsk; Novosibirsk; Novosibirsk

P. Ya. Platonova

Novosibirsk National Research State University

Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0004-1880-9585
SPIN-code: 9529-4061
Russian Federation, Novosibirsk

M. F. Novikova

Novosibirsk National Research State University

Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0008-7479-8277
SPIN-code: 2719-9753
Russian Federation, Novosibirsk

A. S. Tumas

Novosibirsk National Research State University

Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0004-1138-6049
SPIN-code: 2808-4138
Russian Federation, Novosibirsk

E. E. Vergunova

Novosibirsk National Research State University

Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0003-0793-4236
SPIN-code: 7846-8500
Russian Federation, Novosibirsk

D. A. Lukichev

Novosibirsk National Research State University

Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0000-5888-0651
Russian Federation, Novosibirsk

D. A. Sergeev

Novosibirsk National Research State University

Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0009-0007-9699-233X
Russian Federation, Novosibirsk

A. I. Khavkin

Research and Clinical Institute of Childhood; Belgorod State University

Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0001-7308-7280
SPIN-code: 6070-9473

MD, Professor

Russian Federation, Moscow; Belgorod

E. A. Pokushalov

Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Center for New Medical Technologies

Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0002-9494-4234
SPIN-code: 1032-1810

Corresponding Member of the Russian Academy of Sciences, MD, Professor

Russian Federation, Novosibirsk; Novosibirsk

D. A. Kudlay

Sechenov First Moscow State Medical University; Lomonosov Moscow State University

Email: k.nikolaichuk@g.nsu.ru
ORCID iD: 0000-0003-1878-4467
SPIN-code: 4129-7880

Corresponding Member of the Russian Academy of Sciences, MD

Russian Federation, Moscow; Moscow

References

  1. Zhu N., Zhang D., Wang W. et al. China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 382 (8): 727–33. doi: 10.1056/NEJMoa2001017
  2. Guo Y., Cao Q., Hong Z. et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020; 7 (1): 11. doi: 10.1186/s40779-020-00240-0
  3. Li W., Moore M., Vasilieva N. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426 (6965): 450–4. doi: 10.1038/nature02145
  4. Zhou P., Yang X., Wang X. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579 (7798): 270–3. doi: 10.1038/s41586-020-2012-7
  5. Zhang H., Li H., Lyu J. et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. Int J Infect Dis. 2020; 96: 19–24. doi: 10.1016/j.ijid.2020.04.027
  6. Wrapp D., Wang N., Corbett K. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367 (6483): 1260–3. doi: 10.1126/science.abb2507
  7. Zou X., Chen K., Zou J. et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020; 14 (2): 185–92. doi: 10.1007/s11684-020-0754-0
  8. Zhang H., Penninger J., Li Y., Zhong N. et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46 (4): 586–90. doi: 10.1007/s00134-020-05985-9
  9. Wang E., Mao T., Klein J. et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021; 595 (7866): 283–8. doi: 10.1038/s41586-021-03631-y
  10. Liu K., Fang Y., Deng Y. et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020; 133 (9): 1025–31. doi: 10.1097/CM9.0000000000000744
  11. Гриневич В.Б., Лазебник Л.Б., Кравчук Ю.А. и др. Поражения органов пищеварения при постковидном синдроме. Клинические рекомендации. Экспериментальная и клиническая гастроэнтерология. 2022; 12: 4–68 [Grinevich V.B., Lazebnik L.B., Kravchuk Yu.A. et al. Gastrointestinal disorders in post-COVID syndrome. Clinical guidelines. Experimental and Clinical Gastroenterology. 2022; 12: 4–68 (in Russ.)]. doi: 10.31146/1682-8658-ecg-208-12-4-68
  12. Smith J., Sausville E., Girish V. et al. Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Dev Cell. 2020; 53 (5): 514–529.e3. doi: 10.1016/j.devcel.2020.05.012
  13. Pinto B., Oliveira A., Singh Y. et al. ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19. J Infect Dis. 2020; 222 (4): 556–63. doi: 10.1093/infdis/jiaa332
  14. Guan W., Ni Z., Hu Y. et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382 (18): 1708–20. doi: 10.1056/NEJMoa2002032
  15. Shereen M., Khan S., Kazmi A. e al. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020; 24: 91–8. doi: 10.1016/j.jare.2020.03.005
  16. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181 (2): 271–280.e8. doi: 10.1016/j.cell.2020.02.052
  17. Onofrio L., Caraglia M., Facchini G. et al. Toll-like receptors and COVID-19: a two-faced story with an exciting ending. Future Sci OA. 2020; 6 (8): FSO605. doi: 10.2144/fsoa-2020-0091
  18. Lei X., Dong X., Ma R. et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun. 2020; 11 (1): 3810. doi: 10.1038/s41467-020-17665-9
  19. Park A., Iwasaki A. Type I and Type III Interferons - Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host Microbe. 2020; 27 (6): 870–8. doi: 10.1016/j.chom.2020.05.008
  20. Chan J., Kok K., Zhu Z. et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020; 9 (1): 221–36. doi: 10.1080/22221751.2020.1719902
  21. Xia H., Cao Z., Xie X. et al. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep. 2020; 33 (1): 108234. doi: 10.1016/j.celrep.2020.108234
  22. Wang D., Hu B., Hu C. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061–9. doi: 10.1001/jama.2020.1585
  23. Cevik M., Marcus J., Buckee C. et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmission Dynamics Should Inform Policy. Clin Infect Dis. 2021; 73 (Suppl 2): S170–S176. doi: 10.1093/cid/ciaa1442
  24. Кудлай Д.А., Широбоков Я.Е., Гладунова Е.П. и др. Диагностика COVID-19. Способы и проблемы обнаружения вируса SARS-COV-2 в условиях пандемии. Врач. 2020; 31 (8): 5–10 [Kudlay D.A., Shirobokov Y.E., Gladunova E.P. et al. Diagnosis of COVID-19. Methods and problems of virus SARS-CoV-2 detection under pandemic conditions. Vrach. 2020; 31 (8): 5–10 (in Russ.)]. doi: 10.29296/25877305-2020-08-01
  25. Хабибулина М.М., Баженова О.В., Шамилов М.Д. Профессиональное выгорание у врачей после пандемии COVID-19. Врач. 2024; 35 (6): 68–72 [Khabibulina M., Bazhenova O., Shamilov M. Occupational burnout in physicians after the COVID-19 pandemic. Vrach. 2024; 35 (6): 68–72 (in Russ.)]. doi: 10.29296/25877305-2024-06-13
  26. Mehta P., McAuley D., Brown M. et al. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10229): 1033–4. doi: 10.1016/S0140-6736(20)30628-0
  27. Jamilloux Y., Henry T., Belot A. et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020; 19 (7): 102567. doi: 10.1016/j.autrev.2020.102567
  28. Sun X., Wang T., Cai D. et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020; 53: 38–42. doi: 10.1016/j.cytogfr.2020.04.002
  29. Hirano T., Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020; 52 (5): 731–3. doi: 10.1016/j.immuni.2020.04.003
  30. Eguchi S., Kawai T., Scalia R. et al. Understanding Angiotensin II Type 1 Receptor Signaling in Vascular Pathophysiology. Hypertension. 2018; 71 (5): 804–10. doi: 10.1161/HYPERTENSIONAHA.118.10266
  31. Murakami M., Kamimura D., Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity. 2019; 50 (4): 812–31. doi: 10.1016/j.immuni.2019.03.027
  32. Savchenko A.A., Tikhonova E., Kudryavtsev I. et al. TREC/KREC levels and T and B lymphocyte subpopulations in COVID-19 patients at different stages of the disease. Viruses. 2022; 14 (3): 646. doi: 10.3390/v14030646
  33. Moore J., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020; 368 (6490): 473–4. doi: 10.1126/science.abb8925
  34. Wu Z., McGoogan J. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–42. doi: 10.1001/jama.2020.2648
  35. Gandhi R., Lynch J., Del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020; 383 (18): 1757–66. doi: 10.1056/NEJMcp2009249
  36. Aggarwal S., Garcia-Telles N., Aggarwal G. et al. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): Early report from the United States. Diagnosis (Berl). 2020; 7 (2): 91–6. doi: 10.1515/dx-2020-0046
  37. Ginsburg A., Klugman K. COVID-19 pneumonia and the appropriate use of antibiotics. Lancet Glob Health. 2020; 8 (12): e1453–e1454. doi: 10.1016/S2214-109X(20)30444-7
  38. Schaefer I., Padera R., Solomon I. et al. In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19. Mod Pathol. 2020; 33 (11): 2104–14. doi: 10.1038/s41379-020-0595-z
  39. Maiese A., Frati P., Del Duca F. et al. Myocardial Pathology in COVID-19-Associated Cardiac Injury: A Systematic Review. Diagnostics (Basel). 2021; 11 (9): 1647. doi: 10.3390/diagnostics11091647
  40. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. doi: 10.1016/S0140-6736(20)30183-5
  41. Kudlay D., Kofiadi I., Khaitov M. Peculiarities of the T cell immune response in COVID-19. Vaccines. 2022; 10 (2): 242. doi: 10.3390/vaccines10020242
  42. Domingo P., Mur I., Pomar V. et al. The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine. 2020; 58: 102887. doi: 10.1016/j.ebiom.2020.102887
  43. Сироткина О.В., Ермаков А.И., Гайковая Л.Б. и др. Микрочастицы клеток крови у больных COVID-19 как маркер активации системы гемостаза. Тромбоз, гемостаз и реология. 2020; 82 (4): 35–40 [Sirotkina O.V., Ermakov A.I., Gaykovaya L.B. et al. Microparticles of blood cells in patients with COVID-19 as a marker of hemostasis activation. Tromboz, Gemostaz i Reologia. 2020; 82 (4): 35–40 doi: 10.25555/THR.2020.4.0943 (in Russ.)].
  44. Tang N., Li D., Wang X. et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18 (4): 844–7. doi: 10.1111/jth.14768
  45. Fox S., Akmatbekov A., Harbert J. et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020; 8 (7): 681–6. doi: 10.1016/S2213-2600(20)30243-5
  46. Calabrese L. Cytokine storm and the prospects for immunotherapy with COVID-19. Cleve Clin J Med. 2020; 87 (7): 389–93. doi: 10.3949/ccjm.87a.ccc008
  47. Conway E., Pryzdial E. Is the COVID-19 thrombotic catastrophe complement-connected? J Thromb Haemost. 2020; 18 (11): 2812–22. doi: 10.1111/jth.15050
  48. Iba T., Levy J., Warkentin T. et al. Scientific and Standardization Committee on DIC, and the Scientific and Standardization Committee on Perioperative and Critical Care of the International Society on Thrombosis and Haemostasis. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019; 17 (11): 1989–94. doi: 10.1111/jth.14578
  49. Thachil J., Tang N., Gando S. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020; 18 (5): 1023–6. doi: 10.1111/jth.14810
  50. Бородулина Е.А., Широбоков Я.Е., Гладунова Е.П. и др. Диагностика и фармакотерапия вирус-ассоциированных поражений легких. Клиническая фармакология и терапия. 2020; 29 (3): 61–6 [Borodulina E.A., Shirobokov Y.E., Gladunova E.P. et al. Virus-associated lung disease. Klinicheskaya farmakologiya i terapiya. 2020; 29 (3): 61–6 (in Russ.)]. doi: 10.32756/0869-5490-2020-3-61-66

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The intensity of the antiviral response is critical to the outcome of COVID-19: а – mild and moderate form of COVID-19; б – severe form of COVID-19

Download (71KB)
3. Fig. 2. Potential mechanism of cytokine storm in COVID-19 (the binding of SARS-CoV-2 to ACE-II leads to the accumulation of AT-II, preventing the transition to angiotensin-(1-7) and, thereby, triggering signaling pathways for the activation of cytokines)

Download (208KB)

Copyright (c) 2025 Russkiy Vrach Publishing House