Laser technologies for joining biological tissue

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Objective. Improving the effectiveness of surgical treatment for dental patients through the experimental development of a laser seam for soft tissues in the maxillofacial area using laser radiation and biopolymer.

Materials and methods. The experimental research model was created on 8 laboratory rabbits of the Chinchilla breed. Linear wounds on the skin were made with a surgical scalpel No. 15C and sutured. All rabbits were divided into 3 research groups: group 1, wounds were sutured with Prolen 5.0 thread; group 2, the edges of the wounds were joined using laser tissue welding with a laser device with a wavelength of 970 nm and Bioadhesive No. 1 based on bovine serum albumin and indocyanine green; group 3, the edges of the wounds were joined using laser tissue welding with a laser device with a wavelength of 970 nm and Bioadhesive No. 2 based on bovine serum albumin, indocyanine green, and single-walled carbon nanotubes. In the postoperative period, the severity of edema, intensity of hyperemia, and the time of wound epithelialization were assessed on days 1, 3, 5, and 10 in points.

Results. Experimental studies on rabbits in vivo showed that the best regeneration occurred when the edges of wounds were joined using laser skin welding with laser radiation and Biopreparation No. 2. In the postoperative period, there was minimal swelling and hyperemia, no suture dehiscence or tissue necrosis was observed, and earlier epithelialization and an aesthetic scar were noted.

Conclusion. The use of laser radiation and biopreparations is a promising method for joining the edges of wounds on the skin, as it accelerates regeneration and forms an aesthetic scar.

全文:

受限制的访问

作者简介

E. Sorokina

Sechenov First Moscow State Medical University

编辑信件的主要联系方式.
Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0009-0002-7968-8524
SPIN 代码: 1390-8967
俄罗斯联邦, Moscow

M. Soykher

Sechenov First Moscow State Medical University; Moscow Regional Research and Clinical Institute

Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0000-0002-5775-698X
SPIN 代码: 8101-7708

Candidate of Medical Sciences

俄罗斯联邦, Moscow; Moscow

N. Morozova

Sechenov First Moscow State Medical University

Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0000-0002-6453-1615
SPIN 代码: 4654-9842

MD

俄罗斯联邦, Moscow

A. Gerasimenko

Sechenov First Moscow State Medical University; MIET National Research University of Electronic Technology

Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0000-0001-6514-2411
SPIN 代码: 2010-1600

MD, Associate Professor

俄罗斯联邦, Moscow; Zelenograd

S. Tarasenko

Sechenov First Moscow State Medical University

Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0000-0001-8595-8864
SPIN 代码: 3320-0052

MD, Professor

俄罗斯联邦, Moscow

E. Morozova

Patrice Lumumba Peoples' Friendship University of Russia

Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0000-0002-5312-9516
SPIN 代码: 5490-3554

MD, Associate Professor

俄罗斯联邦, Moscow

参考

  1. Евсеев М.А. Хирургический шов: эволюция нити и иглы. Клинический опыт Двадцатки. 2012; 4 (16): 59–62 [Evseev M.A. Surgical suture: the evolution of thread and needle. Clinical experience of the Twenties. 2012; 4 (16): 59–62 (in Russ.)].
  2. Робустова Т.Г. Хирургическая стоматология. 4-е изд. М.: Медицина, 2010; c. 622 [Robustova T.G. Surgical dentistry. 4th ed. M.: Medicine, 2010; p. 622 (in Russ.)].
  3. Федоров П.Г., Аршакян В.А., Гюнтер В.Э. и др. Современные шовные материалы (обзор литературы). Acta Biomedica Scientifica. 2017; 2 (118): 157–62 [Fedorov P.G., Arshakyan V.A., Gunter V.E. et al. Modern sutural materials (review of literature). Acta Biomedica Scientifica. 2017; 2 (118): 157–62 (in Russ.)]. doi: 10.12737/article_5a0a8e626adf33.46655939
  4. Li-Da H., Zhen L., Yu P. et al. A review on biodegradable materials for cardiovascular stent application. Frontiers of Materials Science. 2016; 10 (3): 238–59. doi: 10.1007/s11706-016-0344-x
  5. Chen Y.S., Hsiue G.H. Directing neural differentiation of mesenchymal stem cells by carboxylated multiwalled carbon nanotubes. Biomaterials. 2013; 34 (21): 4936–44. doi: 10.1016/j.biomaterials.2013.03.063
  6. Шахно Е.А. Физические основы применения лазеров в медицине. СПб: НИУ ИТМО, 2012; c. 129 [Shakhno E.A. The physical foundations of the use of lasers in medicine. St. Petersburg: NRU ITMO, 2012; p. 129 (in Russ.)].
  7. Герасименко А.Ю., Губарьков О.В., Ичкитидзе Л.П. и др. Нанокомпозитный припой для лазерной спайки биологических тканей. Известия вузов. Электроника. 2010; 4: 33–41 [Gerasimenko A.Yu., Gubarkov O.V., Ichkitidze L.P., et al. Nanocomposite solder for laser soldering of biological tissues. Izvestiya vuzov. Electronics. 2010; 4: 33–41 (in Russ.)].
  8. Тучин В.В. Лазеры и волоконная оптика в биомедицинских исследованиях. Монография. М.: Ай Пи Ар Медиа, 2021; с. 495 [Tuchin V.V. Biomedical optics fiber research and laser technology. А monograph. M.: IPR Media, 2021; p. 495 (in Russ.)].
  9. Минаев В.П., Жилин К.М. Современные лазерные аппараты для хирургии и силовой терапии на основе полупроводниковых и волоконных лазеров: рекомендации по выбору и применению. М.: Научно-техническое объединение «ИРЭ-Полюс», 2009; c. 47 [Minaev V.P., Zhilin K.M. Modern laser devices for surgery and power therapy based on semiconductor and fiber lasers: recommendations for selection and application. M.: Scientific and Technical Association «IRE-Polyus», 2009; p. 47 (in Russ.)].
  10. Foyt D., Johnson J.P., Kirsch A.J. et al. Dural closure with laser tissue welding. Otolaryngol Head Neck Surg. 1996; 115 (6): 513–8. doi: 10.1016/s0194-59989670005-0
  11. McNally K.M., Sorg B.S., Chan E.K. et al. Optimal parameters for laser tissue soldering. Part 1: tensile strength and scanning electron microscopy analysis. Lasers Surg Med. 1999; 24 (5): 319–31. doi: 10.1002/(sici)1096-9101(1999)24:5<319
  12. Pabittei D.R., de Boon W., Heger M. et al. Laser-assisted vessel welding: state of the art and future outlook. J Clin Transl Res. 2015; 30 (2): 1–18. doi: 10.18053/jctres.201502.006
  13. Kramer E.A., Rentschler M.E. Energy-based tissue fusion for sutureless closure: applications, mechanisms, and potential for functional recovery. Annu Rev Biomed Eng. 2018; 20: 1–20. doi: 10.1146/annurev-bioeng-071516-044702
  14. Ashbell I., Agam N., Katzir A. et al. Laser tissue soldering of the gastrointestinal tract: a systematic review LTS of the gastrointestinal tract. Heliyon. 2023; 9 (5): 16018. doi: 10.1016/j.heliyon.2023.e16018
  15. Gerasimenko A.Y., Morozova E.A., Ryabkin D.I. et al. The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020; 227: 117682. DOI: 10.3390/ bioengineering 9060238
  16. Рябкин Д.И., Сучкова В.В., Герасименко А.Ю. Предсказание прочности на разрыв лазерных сварных швов биотканей методами машинного обучения. Медицинская техника. 2023; 2 (338): 26–9 [Ryabkin D.I., Suchkova V.V., Gerasimenko A.Yu. Prediction of tensile strength of laser welds of biological fabrics by machine learning methods. Medical equipment. 2023; 2 (338): 26–9 (in Russ.)].
  17. Silva S.S., Motta A., Rodrigues M.T. et al. Novel genipin- cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules. 2008; 9 (10): 2764–74. doi: 10.1021/bm800874q
  18. Simhon D., Gabay I., Shpolyansky G. et al. Temperature-controlled laser-soldering system and its clinical application for bonding skin incisions. J Biomed Opt. 2015; 20 (12):128002. doi: 10.1117/1.JBO. 20.12.128002
  19. Barry R.M. Biomedical Photonics. CRC Press. Boca Raton, Florida, USA. 2003. doi: 10.1117/1.1776177
  20. Judy M.M., Fuh L., Matthews J.L. et al. Gel electrophoretic studies of photochemical cross-linking of type I collagen with brominated 1,8-naphthalimide dyes and visible light. Proceedings of SPIE. 1994; 2128. doi: 10.1117/12.184876
  21. Judy M.M., Nosir H.R., Jackson R.W. et al. Photochemical bonding of skin with 1,8-naphthalimide dyes. Proceedings of SPIE. 1997: 3195. doi: 10.1117/12.297902
  22. Mulroy L., Kim J., Wu I. et al. Photochemical keratodesmos for repair of lamellar corneal incisions. Invest Ophthalmol Vis Sci. 2000; 41 (11): 3335–40.
  23. Merguerian P.A., Pugach J.L., Lilge L.D. Nonthermal ureteral tissue bonding: comparison of photochemical collagen crosslinking with thermal laser bonding. Proceedings of SPIE. 1999; 3590. doi: 10.1117/12.350962
  24. Matteini P., Ratto F., Rossi F. et al. Hybrid nanocomposite films for laser-activated tissue bonding. J Biophotonics. 2012; 5 (11–12): 868–77. doi: 10.1002/jbio.201200115
  25. Ark M., Cosman P.H., Boughton P. et al. Photochemical Tissue Bonding (PTB) methods for sutureless tissue adhesion. International Journal of Adhesion and Adhesives. 2016; 71: 87–98. doi: 10.1016/j.ijadhadh.2016.08.006
  26. Wang X., Ao Q., Tian X. et al. 3D bioprinting technologies for hard tissue and organ engineering. Materials. 2016; 9 (10): 1–23. doi: 10.3390/ma9100802
  27. Peterson A.W., Halter M., Tona A. et al. High resolution surface plasmon resonance imaging of single cells. BMC Cell Biol. 2014; 15: 35. doi: 10.1186/1471-2121-15-35
  28. Gobin A.M., O’Neal D.P., Halas N.J. et al. Laser tissue soldering with near-infrared absorbing nanoparticles. Proceedings of SPIE. 2005; 5686 (713): 261. doi: 10.1117/12.590614
  29. Gerasimenko A.Y., Ichkitidze L.P., Podgaetsky V.M. et al. Biomedical applications of promising nanomaterials with carbon nanotubes. Biomed Eng. 2015; 48: 310–4. doi: 10.1007/s10527-015-9476-z
  30. Sun Y., Liu X., George M.N. Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes. Biomed Mater Res. 2021; 109 (2): 193–206. doi: 10.1002/jbm.a.37016
  31. Gerasimenko A.Y., Dedkova A.A., Ichkitidze L.P. et al. A study of preparation techniques and properties of bulk nanocomposites based on aqueous albumin dispersion. Opt Spectrosc. 2013; 115 (2): 283–9. doi: 10.1134/S0030400X13080092
  32. Gerasimenko A.Y., Glukhova O.E., Savostyanov G.V. et al. Laser structuring of carbon nanotubes in the albumin matrix for the creation of composite biostructures. J Biomed Opt. 2017; 22 (6): 065003. doi: 10.1117/1.JBO.22.6.065003
  33. Gerasimenko A.Y., Ichkitidze L.P., Pavlov A.A. et al. Laser system with adaptive thermal stabilization for welding of biological tissues. Biomed Eng. 2016; 49 (6): 344–8. doi: 10.1007/s10527-016-9563-9
  34. Ichkitidze L.P., Gerasimenko V.M., Podgaetsky S.V. et al. Layers with the tensoresistive properties and their possible applications in medicine. Mater Phys Mech. 2018; 37 (2): 153–8. doi: 10.18720/MPM.3722018_7
  35. Семенов Г.М., Петришин В.Л., Ковшова М.В. Хирургический шов. 3-е изд. СПб: Питер, 2012; с. 256 [Semenov G.M., Petrishin V.L., Kovshova M.B. Surgical staining. The 3rd is decreasing. St. Petersburg: Piter, 2012; p. 256 (in Russ.)].
  36. Рисованный С.И., Рисованная О.Н., Масычев В.И. Лазерная стоматология. Краснодар: Кубань-Книга, 2005; c. 74–124 [Risovanny S.I., Risovannaya O.N., Masychev V.I. Laser dentistry. Krasnodar: Kuban-Book, 2005; p. 74–124 (in Russ.)].
  37. Тарасенко С.В., Царев В.Н., Гарипов Р.Д. и др. Микробиологическое обоснование и эффективность применения эрбиевого и неодимового лазеров у пациентов с воспалительными заболеваниями пародонта и периимплантационных тканей. Клиническая стоматология. 2019; 4 (92): 41–5 [Tarasenko S.V., Tsarev V.N., Garipov R.D. et al. Microbiological justification and effectiveness of the use of erbium and neodymium lasers in patients with inflammatory periodontal diseases and peri-implantation tissues. Clinical dentistry. 2019; 4 (92):41–5 (in Russ.)]. doi: 10.37988/1811-153X_2019_4_41
  38. Тарасенко С.В., Вавилова Т.П, Тарасенко И.В. и др. Оптимизация регенерации минерализованных и мягких тканей челюстно-лицевой области после воздействия Er:YAG-лазера. Российский стоматологический журнал. 2016; 20 (2): 66–73 [Tarasenko S.V., Vavilova T.P., Tarasenko I.V., et al. Optimization of regeneration of mineralized and soft tissues of the maxillofacial region after exposure to an Er:YAG laser. Russian Dental Journal. 2016; 20 (2): 66–73 (in Russ.)]. doi: 10.18821/1728-28022016;20(2):66-73
  39. Гемонов В.В., Лаврова Э.Н., Фалин Л.И. Гистология и эмбриология органов полости рта и зубов. М.: ГЭОТАР-Медиа, 2019; с. 320 [Gemonov V.V., Lavrova E.N., Falin L.I. Histology and embryology of the organs of the oral cavity and teeth. M.: GEOTAR-Media, 2019; p.320 (in Russ.)].
  40. Walker D.M. Oral mucosal: an overview. Ann Acad Med Singapore. 2004; 33 (4): 27–30.
  41. Berkovitz B.K., Hoiiand G.R., Moxam B.J. Oral Anatomy. Histology and Embryology. St Louis: Mosby, 2009; р. 416.
  42. Sivapathasundharam B. Textbook or Oral Embryology and Histology. Jay Pee Brothers, Medicine. 2018; р. 370.
  43. Александров М.Т. Лазерная клиническая биофотометрия (теория, эксперимент, практика). М.: Техносфера, 2008; 581 с. [Alexandrov M.T. Laser clinical biophotometry (theory, experiment, practice). M.: Technosphere, 2008; 584 р. (in Russ.)].
  44. Баграмов Р.И., Александров М.Т., Сергеев Ю.Н. Лазеры в стоматологии, челюстно-лицевой хирургии и реконструктивно-пластической хирургии. М.: Техносфера, 2010; 576 с. [Bagramov R.I., Alexandrov M.T., Sergeev Yu.N. Lasers in dentistry, maxillofacial surgery and reconstructive plastic surgery. M.: Technosphere, 2010; 576 р. (in Russ.)].

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Photo of a laboratory rabbit: a – marking of experimental incisions; б – formed linear incisions 1 cm long on the skin of the rabbit's withers

下载 (110KB)
3. Fig. 2. Photo of a laboratory rabbit: a – taking biosolder into a sterile insulin syringe; б – introducing biosolder using an insulin syringe into a linear wound on the withers of the rabbit's back; в – laser radiation exposure on a linear wound on the skin of the withers of the rabbit's back

下载 (220KB)
4. Fig. 3. Photo of a laboratory rabbit after suturing: a – day 1; б – days 3; в – day 5; г – day 10

下载 (212KB)
5. Fig. 4. Dynamics of postoperative edema severity after suturing the skin of the rabbit's withers

下载 (70KB)
6. Fig. 5. Dynamics of hyperemia severity when suturing the skin of rabbit withers

下载 (82KB)

版权所有 © Russkiy Vrach Publishing House, 2025