Laser technologies for joining biological tissue
- 作者: Sorokina E.A.1, Soykher M.I.1,2, Morozova N.S.1, Gerasimenko A.Y.1,3, Tarasenko S.V.1, Morozova E.A.4
-
隶属关系:
- Sechenov First Moscow State Medical University
- Moscow Regional Research and Clinical Institute
- MIET National Research University of Electronic Technology
- Patrice Lumumba Peoples' Friendship University of Russia
- 期: 卷 36, 编号 3 (2025)
- 页面: 26-31
- 栏目: Novelty in Medicine
- URL: https://journals.eco-vector.com/0236-3054/article/view/678070
- DOI: https://doi.org/10.29296/25877305-2025-03-05
- ID: 678070
如何引用文章
详细
Objective. Improving the effectiveness of surgical treatment for dental patients through the experimental development of a laser seam for soft tissues in the maxillofacial area using laser radiation and biopolymer.
Materials and methods. The experimental research model was created on 8 laboratory rabbits of the Chinchilla breed. Linear wounds on the skin were made with a surgical scalpel No. 15C and sutured. All rabbits were divided into 3 research groups: group 1, wounds were sutured with Prolen 5.0 thread; group 2, the edges of the wounds were joined using laser tissue welding with a laser device with a wavelength of 970 nm and Bioadhesive No. 1 based on bovine serum albumin and indocyanine green; group 3, the edges of the wounds were joined using laser tissue welding with a laser device with a wavelength of 970 nm and Bioadhesive No. 2 based on bovine serum albumin, indocyanine green, and single-walled carbon nanotubes. In the postoperative period, the severity of edema, intensity of hyperemia, and the time of wound epithelialization were assessed on days 1, 3, 5, and 10 in points.
Results. Experimental studies on rabbits in vivo showed that the best regeneration occurred when the edges of wounds were joined using laser skin welding with laser radiation and Biopreparation No. 2. In the postoperative period, there was minimal swelling and hyperemia, no suture dehiscence or tissue necrosis was observed, and earlier epithelialization and an aesthetic scar were noted.
Conclusion. The use of laser radiation and biopreparations is a promising method for joining the edges of wounds on the skin, as it accelerates regeneration and forms an aesthetic scar.
全文:

作者简介
E. Sorokina
Sechenov First Moscow State Medical University
编辑信件的主要联系方式.
Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0009-0002-7968-8524
SPIN 代码: 1390-8967
俄罗斯联邦, Moscow
M. Soykher
Sechenov First Moscow State Medical University; Moscow Regional Research and Clinical Institute
Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0000-0002-5775-698X
SPIN 代码: 8101-7708
Candidate of Medical Sciences
俄罗斯联邦, Moscow; MoscowN. Morozova
Sechenov First Moscow State Medical University
Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0000-0002-6453-1615
SPIN 代码: 4654-9842
MD
俄罗斯联邦, MoscowA. Gerasimenko
Sechenov First Moscow State Medical University; MIET National Research University of Electronic Technology
Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0000-0001-6514-2411
SPIN 代码: 2010-1600
MD, Associate Professor
俄罗斯联邦, Moscow; ZelenogradS. Tarasenko
Sechenov First Moscow State Medical University
Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0000-0001-8595-8864
SPIN 代码: 3320-0052
MD, Professor
俄罗斯联邦, MoscowE. Morozova
Patrice Lumumba Peoples' Friendship University of Russia
Email: sorokina_e_a@staff.sechenov.ru
ORCID iD: 0000-0002-5312-9516
SPIN 代码: 5490-3554
MD, Associate Professor
俄罗斯联邦, Moscow参考
- Евсеев М.А. Хирургический шов: эволюция нити и иглы. Клинический опыт Двадцатки. 2012; 4 (16): 59–62 [Evseev M.A. Surgical suture: the evolution of thread and needle. Clinical experience of the Twenties. 2012; 4 (16): 59–62 (in Russ.)].
- Робустова Т.Г. Хирургическая стоматология. 4-е изд. М.: Медицина, 2010; c. 622 [Robustova T.G. Surgical dentistry. 4th ed. M.: Medicine, 2010; p. 622 (in Russ.)].
- Федоров П.Г., Аршакян В.А., Гюнтер В.Э. и др. Современные шовные материалы (обзор литературы). Acta Biomedica Scientifica. 2017; 2 (118): 157–62 [Fedorov P.G., Arshakyan V.A., Gunter V.E. et al. Modern sutural materials (review of literature). Acta Biomedica Scientifica. 2017; 2 (118): 157–62 (in Russ.)]. doi: 10.12737/article_5a0a8e626adf33.46655939
- Li-Da H., Zhen L., Yu P. et al. A review on biodegradable materials for cardiovascular stent application. Frontiers of Materials Science. 2016; 10 (3): 238–59. doi: 10.1007/s11706-016-0344-x
- Chen Y.S., Hsiue G.H. Directing neural differentiation of mesenchymal stem cells by carboxylated multiwalled carbon nanotubes. Biomaterials. 2013; 34 (21): 4936–44. doi: 10.1016/j.biomaterials.2013.03.063
- Шахно Е.А. Физические основы применения лазеров в медицине. СПб: НИУ ИТМО, 2012; c. 129 [Shakhno E.A. The physical foundations of the use of lasers in medicine. St. Petersburg: NRU ITMO, 2012; p. 129 (in Russ.)].
- Герасименко А.Ю., Губарьков О.В., Ичкитидзе Л.П. и др. Нанокомпозитный припой для лазерной спайки биологических тканей. Известия вузов. Электроника. 2010; 4: 33–41 [Gerasimenko A.Yu., Gubarkov O.V., Ichkitidze L.P., et al. Nanocomposite solder for laser soldering of biological tissues. Izvestiya vuzov. Electronics. 2010; 4: 33–41 (in Russ.)].
- Тучин В.В. Лазеры и волоконная оптика в биомедицинских исследованиях. Монография. М.: Ай Пи Ар Медиа, 2021; с. 495 [Tuchin V.V. Biomedical optics fiber research and laser technology. А monograph. M.: IPR Media, 2021; p. 495 (in Russ.)].
- Минаев В.П., Жилин К.М. Современные лазерные аппараты для хирургии и силовой терапии на основе полупроводниковых и волоконных лазеров: рекомендации по выбору и применению. М.: Научно-техническое объединение «ИРЭ-Полюс», 2009; c. 47 [Minaev V.P., Zhilin K.M. Modern laser devices for surgery and power therapy based on semiconductor and fiber lasers: recommendations for selection and application. M.: Scientific and Technical Association «IRE-Polyus», 2009; p. 47 (in Russ.)].
- Foyt D., Johnson J.P., Kirsch A.J. et al. Dural closure with laser tissue welding. Otolaryngol Head Neck Surg. 1996; 115 (6): 513–8. doi: 10.1016/s0194-59989670005-0
- McNally K.M., Sorg B.S., Chan E.K. et al. Optimal parameters for laser tissue soldering. Part 1: tensile strength and scanning electron microscopy analysis. Lasers Surg Med. 1999; 24 (5): 319–31. doi: 10.1002/(sici)1096-9101(1999)24:5<319
- Pabittei D.R., de Boon W., Heger M. et al. Laser-assisted vessel welding: state of the art and future outlook. J Clin Transl Res. 2015; 30 (2): 1–18. doi: 10.18053/jctres.201502.006
- Kramer E.A., Rentschler M.E. Energy-based tissue fusion for sutureless closure: applications, mechanisms, and potential for functional recovery. Annu Rev Biomed Eng. 2018; 20: 1–20. doi: 10.1146/annurev-bioeng-071516-044702
- Ashbell I., Agam N., Katzir A. et al. Laser tissue soldering of the gastrointestinal tract: a systematic review LTS of the gastrointestinal tract. Heliyon. 2023; 9 (5): 16018. doi: 10.1016/j.heliyon.2023.e16018
- Gerasimenko A.Y., Morozova E.A., Ryabkin D.I. et al. The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020; 227: 117682. DOI: 10.3390/ bioengineering 9060238
- Рябкин Д.И., Сучкова В.В., Герасименко А.Ю. Предсказание прочности на разрыв лазерных сварных швов биотканей методами машинного обучения. Медицинская техника. 2023; 2 (338): 26–9 [Ryabkin D.I., Suchkova V.V., Gerasimenko A.Yu. Prediction of tensile strength of laser welds of biological fabrics by machine learning methods. Medical equipment. 2023; 2 (338): 26–9 (in Russ.)].
- Silva S.S., Motta A., Rodrigues M.T. et al. Novel genipin- cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules. 2008; 9 (10): 2764–74. doi: 10.1021/bm800874q
- Simhon D., Gabay I., Shpolyansky G. et al. Temperature-controlled laser-soldering system and its clinical application for bonding skin incisions. J Biomed Opt. 2015; 20 (12):128002. doi: 10.1117/1.JBO. 20.12.128002
- Barry R.M. Biomedical Photonics. CRC Press. Boca Raton, Florida, USA. 2003. doi: 10.1117/1.1776177
- Judy M.M., Fuh L., Matthews J.L. et al. Gel electrophoretic studies of photochemical cross-linking of type I collagen with brominated 1,8-naphthalimide dyes and visible light. Proceedings of SPIE. 1994; 2128. doi: 10.1117/12.184876
- Judy M.M., Nosir H.R., Jackson R.W. et al. Photochemical bonding of skin with 1,8-naphthalimide dyes. Proceedings of SPIE. 1997: 3195. doi: 10.1117/12.297902
- Mulroy L., Kim J., Wu I. et al. Photochemical keratodesmos for repair of lamellar corneal incisions. Invest Ophthalmol Vis Sci. 2000; 41 (11): 3335–40.
- Merguerian P.A., Pugach J.L., Lilge L.D. Nonthermal ureteral tissue bonding: comparison of photochemical collagen crosslinking with thermal laser bonding. Proceedings of SPIE. 1999; 3590. doi: 10.1117/12.350962
- Matteini P., Ratto F., Rossi F. et al. Hybrid nanocomposite films for laser-activated tissue bonding. J Biophotonics. 2012; 5 (11–12): 868–77. doi: 10.1002/jbio.201200115
- Ark M., Cosman P.H., Boughton P. et al. Photochemical Tissue Bonding (PTB) methods for sutureless tissue adhesion. International Journal of Adhesion and Adhesives. 2016; 71: 87–98. doi: 10.1016/j.ijadhadh.2016.08.006
- Wang X., Ao Q., Tian X. et al. 3D bioprinting technologies for hard tissue and organ engineering. Materials. 2016; 9 (10): 1–23. doi: 10.3390/ma9100802
- Peterson A.W., Halter M., Tona A. et al. High resolution surface plasmon resonance imaging of single cells. BMC Cell Biol. 2014; 15: 35. doi: 10.1186/1471-2121-15-35
- Gobin A.M., O’Neal D.P., Halas N.J. et al. Laser tissue soldering with near-infrared absorbing nanoparticles. Proceedings of SPIE. 2005; 5686 (713): 261. doi: 10.1117/12.590614
- Gerasimenko A.Y., Ichkitidze L.P., Podgaetsky V.M. et al. Biomedical applications of promising nanomaterials with carbon nanotubes. Biomed Eng. 2015; 48: 310–4. doi: 10.1007/s10527-015-9476-z
- Sun Y., Liu X., George M.N. Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes. Biomed Mater Res. 2021; 109 (2): 193–206. doi: 10.1002/jbm.a.37016
- Gerasimenko A.Y., Dedkova A.A., Ichkitidze L.P. et al. A study of preparation techniques and properties of bulk nanocomposites based on aqueous albumin dispersion. Opt Spectrosc. 2013; 115 (2): 283–9. doi: 10.1134/S0030400X13080092
- Gerasimenko A.Y., Glukhova O.E., Savostyanov G.V. et al. Laser structuring of carbon nanotubes in the albumin matrix for the creation of composite biostructures. J Biomed Opt. 2017; 22 (6): 065003. doi: 10.1117/1.JBO.22.6.065003
- Gerasimenko A.Y., Ichkitidze L.P., Pavlov A.A. et al. Laser system with adaptive thermal stabilization for welding of biological tissues. Biomed Eng. 2016; 49 (6): 344–8. doi: 10.1007/s10527-016-9563-9
- Ichkitidze L.P., Gerasimenko V.M., Podgaetsky S.V. et al. Layers with the tensoresistive properties and their possible applications in medicine. Mater Phys Mech. 2018; 37 (2): 153–8. doi: 10.18720/MPM.3722018_7
- Семенов Г.М., Петришин В.Л., Ковшова М.В. Хирургический шов. 3-е изд. СПб: Питер, 2012; с. 256 [Semenov G.M., Petrishin V.L., Kovshova M.B. Surgical staining. The 3rd is decreasing. St. Petersburg: Piter, 2012; p. 256 (in Russ.)].
- Рисованный С.И., Рисованная О.Н., Масычев В.И. Лазерная стоматология. Краснодар: Кубань-Книга, 2005; c. 74–124 [Risovanny S.I., Risovannaya O.N., Masychev V.I. Laser dentistry. Krasnodar: Kuban-Book, 2005; p. 74–124 (in Russ.)].
- Тарасенко С.В., Царев В.Н., Гарипов Р.Д. и др. Микробиологическое обоснование и эффективность применения эрбиевого и неодимового лазеров у пациентов с воспалительными заболеваниями пародонта и периимплантационных тканей. Клиническая стоматология. 2019; 4 (92): 41–5 [Tarasenko S.V., Tsarev V.N., Garipov R.D. et al. Microbiological justification and effectiveness of the use of erbium and neodymium lasers in patients with inflammatory periodontal diseases and peri-implantation tissues. Clinical dentistry. 2019; 4 (92):41–5 (in Russ.)]. doi: 10.37988/1811-153X_2019_4_41
- Тарасенко С.В., Вавилова Т.П, Тарасенко И.В. и др. Оптимизация регенерации минерализованных и мягких тканей челюстно-лицевой области после воздействия Er:YAG-лазера. Российский стоматологический журнал. 2016; 20 (2): 66–73 [Tarasenko S.V., Vavilova T.P., Tarasenko I.V., et al. Optimization of regeneration of mineralized and soft tissues of the maxillofacial region after exposure to an Er:YAG laser. Russian Dental Journal. 2016; 20 (2): 66–73 (in Russ.)]. doi: 10.18821/1728-28022016;20(2):66-73
- Гемонов В.В., Лаврова Э.Н., Фалин Л.И. Гистология и эмбриология органов полости рта и зубов. М.: ГЭОТАР-Медиа, 2019; с. 320 [Gemonov V.V., Lavrova E.N., Falin L.I. Histology and embryology of the organs of the oral cavity and teeth. M.: GEOTAR-Media, 2019; p.320 (in Russ.)].
- Walker D.M. Oral mucosal: an overview. Ann Acad Med Singapore. 2004; 33 (4): 27–30.
- Berkovitz B.K., Hoiiand G.R., Moxam B.J. Oral Anatomy. Histology and Embryology. St Louis: Mosby, 2009; р. 416.
- Sivapathasundharam B. Textbook or Oral Embryology and Histology. Jay Pee Brothers, Medicine. 2018; р. 370.
- Александров М.Т. Лазерная клиническая биофотометрия (теория, эксперимент, практика). М.: Техносфера, 2008; 581 с. [Alexandrov M.T. Laser clinical biophotometry (theory, experiment, practice). M.: Technosphere, 2008; 584 р. (in Russ.)].
- Баграмов Р.И., Александров М.Т., Сергеев Ю.Н. Лазеры в стоматологии, челюстно-лицевой хирургии и реконструктивно-пластической хирургии. М.: Техносфера, 2010; 576 с. [Bagramov R.I., Alexandrov M.T., Sergeev Yu.N. Lasers in dentistry, maxillofacial surgery and reconstructive plastic surgery. M.: Technosphere, 2010; 576 р. (in Russ.)].
补充文件
