In the footsteps of COVID-19. The evolution of the virus
- Authors: Starkova D.V.1, Vdoushkina E.S.1, Borodulina E.A.1
-
Affiliations:
- Samara State Medical University
- Issue: Vol 36, No 4 (2025)
- Pages: 9-12
- Section: Lecture
- URL: https://journals.eco-vector.com/0236-3054/article/view/679091
- DOI: https://doi.org/10.29296/25877305-2025-04-02
- ID: 679091
Cite item
Abstract
Despite the completion of the COVID-19 pandemia, the study of the virus and its properties remains an urgent task. The review discusses data on coronavirus infection over the past 2 years, the leading causes of its distribution are allocated, the evolution of the Omicron's sublinia is analyzed. It is shown that each new sublunium has increased transmission, virulence, an improved ability to eliminate immunity.
Keywords
Full Text

About the authors
D. V. Starkova
Samara State Medical University
Email: borodulinbe@yandex.ru
ORCID iD: 0009-0004-5607-2588
Russian Federation, Samara
E. S. Vdoushkina
Samara State Medical University
Email: borodulinbe@yandex.ru
ORCID iD: 0000-0003-0039-6829
SPIN-code: 1111-2870
Candidate of Medical Sciences, Associate Professor
Russian Federation, SamaraE. A. Borodulina
Samara State Medical University
Author for correspondence.
Email: borodulinbe@yandex.ru
ORCID iD: 0000-0002-3063-1538
SPIN-code: 9770-5890
MD, Professor
Russian Federation, SamaraReferences
- World Health Organization, Covid-19 epidemiological update – 24 December 2024. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
- Сизикова Т.Е., Карулина Н.В., Петров А.А. и др. Сублинии геноварианта «омикрон» вируса SARS-CoV-2 как потенциальные доминирующие агенты новых подъемов заболеваемости COVID-19 в России. Вестник войск РХБ защиты. 2023; 7 (4): 338–49 [Sizikova T.E., Karulina N.V., Petrov A.A. et al. Sublines of the omicron genovariant of the SARS-CoV-2 virus as potential dominant agents of new increases in the incidence of COVID-19 in Russia. Bulletin of the Russian Defense Forces. 2023; 7 (4): 338–49 (in Russ.)]. doi: 10.35825/2587-5728-2023-7-4-338-349
- Zaman K., Shete A.M., Mishra S.K. et al. Omicron BA.2 lineage predominance in severe acute respiratory syndrome coronavirus 2 positive cases during the third wave in North India. Front Med (Lausanne). 2022; 9: 955930. doi: 10.3389/fmed.2022.955930
- Saxena S.K., Kumar S., Ansari S. et al. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol. 2022; 94 (4): 1738–44. doi: 10.1002/jmv.27524
- Shipulin G.A., Savochkina Y., Shuryaeva A.K. et al. Development and application of an RT–PCR assay for the identification of the delta and omicron variants of SARS-COV-2. Heliyon. 2023; 9 (6): e16917. doi: 10.1016/j.heliyon.2023.e16917
- Faraone J.N., Qu P., Zheng Y.M. et al. Continued evasion of neutralizing antibody response by Omicron XBB.1.16. Cell Rep. 2023; 42 (10): 113193. doi: 10.1016/j.celrep.2023.113193
- Esmaeilzadeh A., Ebrahimi F., Jahani Maleki A. et al. EG.5 (Eris) and BA.2.86 (Pirola) two new subvariants of SARS-CoV-2: a new face of old COVID-19. Infection. 2024; 52 (2): 337–43. doi: 10.1007/s15010-023-02146-0
- Mohanty A., Rohilla R., Mehta R. et al. XBB.1.5 an emerging threat: correspondence. Int J Surg. 2023; 109 (4): 1050–1. doi: 10.1097/JS9.0000000000000261
- Looi M.K. What do we know about the Arcturus XBB.1.16 subvariant? BMJ. 2023; 381: 1074. doi: 10.1136/bmj.p1074
- Harris E. XBB.1.16 Deemed COVID-19 "Variant of Interest". JAMA. 2023; 329 (20): 1731. doi: 10.1001/jama.2023.7768
- Yadav S., Zaman K., Bashyal P. et al. Newer emerging SARS-COV2 variant: Omicron EG.5. Ann Med Surg (Lond). 2023; 85 (12): 5845–6. doi: 10.1097/MS9.0000000000001386
- Uraki R., Kiso M., Iwatsuki-Horimoto K. et al. Characterization of a SARS-CoV-2 EG.5.1 clinical isolate in vitro and in vivo. Cell Rep. 2023; 42 (12): 113580. doi: 10.1016/j.celrep.2023.113580
- Kaku Y., Kosugi Y., Uriu K. et al. Antiviral efficacy of the SARS-CoV-2 XBB breakthrough infection sera against omicron subvariants including EG.5. Lancet Infect Dis. 2023; 23 (10): e395–e396. doi: 10.1016/S1473-3099(23)00553-4
- Faraone J.N., Qu P., Goodarzi N. et al. Immune evasion and membrane fusion of SARS-CoV-2 XBB subvariants EG.5.1 and XBB.2.3. Emerg Microbes Infect. 2023; 12 (2): 2270069. doi: 10.1080/22221751.2023.2270069
- Lu C.K., Lung J., Shu L.H. et al. The Inhibiting Effect of GB-2, (+)-Catechin, Theaflavin, and Theaflavin 3-Gallate on Interaction between ACE2 and SARS-CoV-2 EG.5.1 and HV.1 Variants. Int J Mol Sci. 2024; 25 (17): 9498. doi: 10.3390/ijms25179498
- Levy M.E., Chilunda V., Davis R.E. et al. Reduced Likelihood of Hospitalization With the JN.1 or HV.1 Severe Acute Respiratory Syndrome Coronavirus 2 Variants Compared With the EG.5 Variant. J Infect Dis. 2024; 230 (5): 1197–201. doi: 10.1093/infdis/jiae364
- Rasmussen M., Møller F.T., Gunalan V. et al. First cases of SARS-CoV-2 BA.2.86 in Denmark, 2023. Euro Surveill. 2023; 28 (36): 2300460. doi: 10.2807/1560-7917.ES.2023.28.36.2300460
- Lassaunière R., Polacek C., Utko M. et al. Virus isolation and neutralisation of SARS-CoV-2 variants BA.2.86 and EG.5.1. Lancet Infect Dis. 2023; 23 (12): e509–e510. doi: 10.1016/S1473-3099(23)00682-5
- Lasrado N., Collier A.Y., Hachmann N.P. et al. Neutralization escape by SARS-CoV-2 Omicron subvariant BA.2.86. Vaccine. 2023; 41 (47): 6904–9. doi: 10.1016/j.vaccine.2023.10.051
- Qu P., Xu K., Faraone J.N. et al. Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 BA.2.86 and FLip variants. Cell. 2024; 187 (3): 585–595.e6. doi: 10.1016/j.cell.2023.12.026
- Zhang L., Kempf A., Nehlmeier I. et al. SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency. Cell. 2024; 187 (3): 596–608.e17. doi: 10.1016/j.cell.2023.12.025
- Planas D., Staropoli I., Michel V. et al. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. bioRxiv [Preprint]. 2024: 2023.11.20.567873. doi: 10.1101/2023.11.20.567873
- Tamura T., Mizuma K., Nasser H. et al. Virological characteristics of the SARS-CoV-2 BA.2.86 variant. Cell Host Microbe. 2024; 32 (2): 170–180.e12. doi: 10.1016/j.chom.2024.01.001
- Basu S., Kayal T., Patro P.P. et al. JN.1: ongoing considerations of the shifting landscape of SARS-CoV-2 variants. Future Microbiol. 2024; 19 (7): 559–62. doi: 10.2217/fmb-2024-0010
- Kaku Y., Okumura K., Padilla-Blanco M. et al. Virological characteristics of the SARS-CoV-2 JN.1 variant. Lancet Infect Dis. 2024; 24 (2): e82. doi: 10.1016/S1473-3099(23)00813-7
- Looi MK. Covid-19: WHO adds JN.1 as new variant of interest. BMJ. 2023; 383: 2975. doi: 10.1136/bmj.p2975
- Planas D., Staropoli I., Michel V. et al. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. Nat Commun. 2024; 15 (1): 2254. doi: 10.1038/s41467-024-46490-7
- Hemo M.K., Islam M.A. JN.1 as a new variant of COVID-19 - editorial. Ann Med Surg (Lond). 2024; 86 (4): 1833–5. doi: 10.1097/MS9.0000000000001876
- Li P., Faraone J.N., Hsu C.C. et al. Neutralization escape, infectivity, and membrane fusion of JN.1-derived SARS-CoV-2 SLip, FLiRT, and KP.2 variants. Cell Rep. 2024; 43 (8): 114520. doi: 10.1016/j.celrep.2024.114520
- Donnelly S.C. FLiRT a dominant COVID variant responsible for a summer surge in COVID infections. QJM. 2024; 117 (7): 483. doi: 10.1093/qjmed/hcae127
- Kaku Y., Yo M.S., Tolentino J.E. et al. Virological characteristics of the SARS-CoV-2 KP.3, LB.1, and KP.2.3 variants. Lancet Infect Dis. 2024; 24 (8): e482–e483. doi: 10.1016/S1473-3099(24)00415-8
- Kaku Y., Okumura K., Kawakubo S. et al. Virological characteristics of the SARS-CoV-2 XEC variant. Lancet Infect Dis. 2024; 24 (12): e736. doi: 10.1016/S1473-3099(24)00731-X
- Liu J., Yu Y., Jian F. et al. Enhanced immune evasion of SARS-CoV-2 variants KP.3.1.1 and XEC through N-terminal domain mutations. Lancet Infect Dis. 2025: e6–e7. doi: 10.1016/S1473-3099(24)00738-2
- Li P., Faraone J.N., Hsu C.C. et al. Immune Evasion, Cell-Cell Fusion, and Spike Stability of the SARS-CoV-2 XEC Variant: Role of Glycosylation Mutations at the N-terminal Domain. bioRxiv [Preprint]. 2024; 2024.11.12.623078. doi: 10.1101/2024.11.12.623078
- Arora P., Happle C., Kempf A. et al. Impact of JN.1 booster vaccination on neutralisation of SARS-CoV-2 variants KP.3.1.1 and XEC. Lancet Infect Dis. 2024; 24 (12): e732-e733. doi: 10.1016/S1473-3099(24)00688-1
- Wu G., Zhang Y., Niu L. et al. Interleukin-1β promotes human metapneumovirus replication via activating the cGAS-STING pathway. Virus Res. 2024; 343: 199344. doi: 10.1016/j.virusres.2024.199344
- Feng Y., He T., Zhang B. et al. Epidemiology and diagnosis technologies of human metapneumovirus in China: a mini review. Virol J. 2024; 21 (1): 59. doi: 10.1186/s12985-024-02327-9
- Оторбаева Д.С., Малышева М.А., Абдылдаева С.Ж. Клинико эпидемиологические особенности Метапневмовирусной инфекции в Кыргызской Республике, 40 неделя 2022 г. – 15 неделя 2024 г. Здравоохранение Кыргызстана. 2024; 2: 160–6 [Otorbaeva D.S., Malysheva M.A., Abdyldaeva S.J. Clinical and epidemiological features of Metapneumovirus infection in the Kyrgyz Republic, week 40, 2022 – week 15, 2024. Healthcare of Kyrgyzstan. 2024; 2: 160–6 (in Russ)]. doi: 10.51350/zdravkg2024.2.6.22.159.165
Supplementary files
