In the footsteps of COVID-19. The evolution of the virus

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Despite the completion of the COVID-19 pandemia, the study of the virus and its properties remains an urgent task. The review discusses data on coronavirus infection over the past 2 years, the leading causes of its distribution are allocated, the evolution of the Omicron's sublinia is analyzed. It is shown that each new sublunium has increased transmission, virulence, an improved ability to eliminate immunity.

全文:

受限制的访问

作者简介

D. Starkova

Samara State Medical University

Email: borodulinbe@yandex.ru
ORCID iD: 0009-0004-5607-2588
俄罗斯联邦, Samara

E. Vdoushkina

Samara State Medical University

Email: borodulinbe@yandex.ru
ORCID iD: 0000-0003-0039-6829
SPIN 代码: 1111-2870

Candidate of Medical Sciences, Associate Professor

俄罗斯联邦, Samara

E. Borodulina

Samara State Medical University

编辑信件的主要联系方式.
Email: borodulinbe@yandex.ru
ORCID iD: 0000-0002-3063-1538
SPIN 代码: 9770-5890

MD, Professor

俄罗斯联邦, Samara

参考

  1. World Health Organization, Covid-19 epidemiological update – 24 December 2024. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
  2. Сизикова Т.Е., Карулина Н.В., Петров А.А. и др. Сублинии геноварианта «омикрон» вируса SARS-CoV-2 как потенциальные доминирующие агенты новых подъемов заболеваемости COVID-19 в России. Вестник войск РХБ защиты. 2023; 7 (4): 338–49 [Sizikova T.E., Karulina N.V., Petrov A.A. et al. Sublines of the omicron genovariant of the SARS-CoV-2 virus as potential dominant agents of new increases in the incidence of COVID-19 in Russia. Bulletin of the Russian Defense Forces. 2023; 7 (4): 338–49 (in Russ.)]. doi: 10.35825/2587-5728-2023-7-4-338-349
  3. Zaman K., Shete A.M., Mishra S.K. et al. Omicron BA.2 lineage predominance in severe acute respiratory syndrome coronavirus 2 positive cases during the third wave in North India. Front Med (Lausanne). 2022; 9: 955930. doi: 10.3389/fmed.2022.955930
  4. Saxena S.K., Kumar S., Ansari S. et al. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol. 2022; 94 (4): 1738–44. doi: 10.1002/jmv.27524
  5. Shipulin G.A., Savochkina Y., Shuryaeva A.K. et al. Development and application of an RT–PCR assay for the identification of the delta and omicron variants of SARS-COV-2. Heliyon. 2023; 9 (6): e16917. doi: 10.1016/j.heliyon.2023.e16917
  6. Faraone J.N., Qu P., Zheng Y.M. et al. Continued evasion of neutralizing antibody response by Omicron XBB.1.16. Cell Rep. 2023; 42 (10): 113193. doi: 10.1016/j.celrep.2023.113193
  7. Esmaeilzadeh A., Ebrahimi F., Jahani Maleki A. et al. EG.5 (Eris) and BA.2.86 (Pirola) two new subvariants of SARS-CoV-2: a new face of old COVID-19. Infection. 2024; 52 (2): 337–43. doi: 10.1007/s15010-023-02146-0
  8. Mohanty A., Rohilla R., Mehta R. et al. XBB.1.5 an emerging threat: correspondence. Int J Surg. 2023; 109 (4): 1050–1. doi: 10.1097/JS9.0000000000000261
  9. Looi M.K. What do we know about the Arcturus XBB.1.16 subvariant? BMJ. 2023; 381: 1074. doi: 10.1136/bmj.p1074
  10. Harris E. XBB.1.16 Deemed COVID-19 "Variant of Interest". JAMA. 2023; 329 (20): 1731. doi: 10.1001/jama.2023.7768
  11. Yadav S., Zaman K., Bashyal P. et al. Newer emerging SARS-COV2 variant: Omicron EG.5. Ann Med Surg (Lond). 2023; 85 (12): 5845–6. doi: 10.1097/MS9.0000000000001386
  12. Uraki R., Kiso M., Iwatsuki-Horimoto K. et al. Characterization of a SARS-CoV-2 EG.5.1 clinical isolate in vitro and in vivo. Cell Rep. 2023; 42 (12): 113580. doi: 10.1016/j.celrep.2023.113580
  13. Kaku Y., Kosugi Y., Uriu K. et al. Antiviral efficacy of the SARS-CoV-2 XBB breakthrough infection sera against omicron subvariants including EG.5. Lancet Infect Dis. 2023; 23 (10): e395–e396. doi: 10.1016/S1473-3099(23)00553-4
  14. Faraone J.N., Qu P., Goodarzi N. et al. Immune evasion and membrane fusion of SARS-CoV-2 XBB subvariants EG.5.1 and XBB.2.3. Emerg Microbes Infect. 2023; 12 (2): 2270069. doi: 10.1080/22221751.2023.2270069
  15. Lu C.K., Lung J., Shu L.H. et al. The Inhibiting Effect of GB-2, (+)-Catechin, Theaflavin, and Theaflavin 3-Gallate on Interaction between ACE2 and SARS-CoV-2 EG.5.1 and HV.1 Variants. Int J Mol Sci. 2024; 25 (17): 9498. doi: 10.3390/ijms25179498
  16. Levy M.E., Chilunda V., Davis R.E. et al. Reduced Likelihood of Hospitalization With the JN.1 or HV.1 Severe Acute Respiratory Syndrome Coronavirus 2 Variants Compared With the EG.5 Variant. J Infect Dis. 2024; 230 (5): 1197–201. doi: 10.1093/infdis/jiae364
  17. Rasmussen M., Møller F.T., Gunalan V. et al. First cases of SARS-CoV-2 BA.2.86 in Denmark, 2023. Euro Surveill. 2023; 28 (36): 2300460. doi: 10.2807/1560-7917.ES.2023.28.36.2300460
  18. Lassaunière R., Polacek C., Utko M. et al. Virus isolation and neutralisation of SARS-CoV-2 variants BA.2.86 and EG.5.1. Lancet Infect Dis. 2023; 23 (12): e509–e510. doi: 10.1016/S1473-3099(23)00682-5
  19. Lasrado N., Collier A.Y., Hachmann N.P. et al. Neutralization escape by SARS-CoV-2 Omicron subvariant BA.2.86. Vaccine. 2023; 41 (47): 6904–9. doi: 10.1016/j.vaccine.2023.10.051
  20. Qu P., Xu K., Faraone J.N. et al. Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 BA.2.86 and FLip variants. Cell. 2024; 187 (3): 585–595.e6. doi: 10.1016/j.cell.2023.12.026
  21. Zhang L., Kempf A., Nehlmeier I. et al. SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency. Cell. 2024; 187 (3): 596–608.e17. doi: 10.1016/j.cell.2023.12.025
  22. Planas D., Staropoli I., Michel V. et al. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. bioRxiv [Preprint]. 2024: 2023.11.20.567873. doi: 10.1101/2023.11.20.567873
  23. Tamura T., Mizuma K., Nasser H. et al. Virological characteristics of the SARS-CoV-2 BA.2.86 variant. Cell Host Microbe. 2024; 32 (2): 170–180.e12. doi: 10.1016/j.chom.2024.01.001
  24. Basu S., Kayal T., Patro P.P. et al. JN.1: ongoing considerations of the shifting landscape of SARS-CoV-2 variants. Future Microbiol. 2024; 19 (7): 559–62. doi: 10.2217/fmb-2024-0010
  25. Kaku Y., Okumura K., Padilla-Blanco M. et al. Virological characteristics of the SARS-CoV-2 JN.1 variant. Lancet Infect Dis. 2024; 24 (2): e82. doi: 10.1016/S1473-3099(23)00813-7
  26. Looi MK. Covid-19: WHO adds JN.1 as new variant of interest. BMJ. 2023; 383: 2975. doi: 10.1136/bmj.p2975
  27. Planas D., Staropoli I., Michel V. et al. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. Nat Commun. 2024; 15 (1): 2254. doi: 10.1038/s41467-024-46490-7
  28. Hemo M.K., Islam M.A. JN.1 as a new variant of COVID-19 - editorial. Ann Med Surg (Lond). 2024; 86 (4): 1833–5. doi: 10.1097/MS9.0000000000001876
  29. Li P., Faraone J.N., Hsu C.C. et al. Neutralization escape, infectivity, and membrane fusion of JN.1-derived SARS-CoV-2 SLip, FLiRT, and KP.2 variants. Cell Rep. 2024; 43 (8): 114520. doi: 10.1016/j.celrep.2024.114520
  30. Donnelly S.C. FLiRT a dominant COVID variant responsible for a summer surge in COVID infections. QJM. 2024; 117 (7): 483. doi: 10.1093/qjmed/hcae127
  31. Kaku Y., Yo M.S., Tolentino J.E. et al. Virological characteristics of the SARS-CoV-2 KP.3, LB.1, and KP.2.3 variants. Lancet Infect Dis. 2024; 24 (8): e482–e483. doi: 10.1016/S1473-3099(24)00415-8
  32. Kaku Y., Okumura K., Kawakubo S. et al. Virological characteristics of the SARS-CoV-2 XEC variant. Lancet Infect Dis. 2024; 24 (12): e736. doi: 10.1016/S1473-3099(24)00731-X
  33. Liu J., Yu Y., Jian F. et al. Enhanced immune evasion of SARS-CoV-2 variants KP.3.1.1 and XEC through N-terminal domain mutations. Lancet Infect Dis. 2025: e6–e7. doi: 10.1016/S1473-3099(24)00738-2
  34. Li P., Faraone J.N., Hsu C.C. et al. Immune Evasion, Cell-Cell Fusion, and Spike Stability of the SARS-CoV-2 XEC Variant: Role of Glycosylation Mutations at the N-terminal Domain. bioRxiv [Preprint]. 2024; 2024.11.12.623078. doi: 10.1101/2024.11.12.623078
  35. Arora P., Happle C., Kempf A. et al. Impact of JN.1 booster vaccination on neutralisation of SARS-CoV-2 variants KP.3.1.1 and XEC. Lancet Infect Dis. 2024; 24 (12): e732-e733. doi: 10.1016/S1473-3099(24)00688-1
  36. Wu G., Zhang Y., Niu L. et al. Interleukin-1β promotes human metapneumovirus replication via activating the cGAS-STING pathway. Virus Res. 2024; 343: 199344. doi: 10.1016/j.virusres.2024.199344
  37. Feng Y., He T., Zhang B. et al. Epidemiology and diagnosis technologies of human metapneumovirus in China: a mini review. Virol J. 2024; 21 (1): 59. doi: 10.1186/s12985-024-02327-9
  38. Оторбаева Д.С., Малышева М.А., Абдылдаева С.Ж. Клинико эпидемиологические особенности Метапневмовирусной инфекции в Кыргызской Республике, 40 неделя 2022 г. – 15 неделя 2024 г. Здравоохранение Кыргызстана. 2024; 2: 160–6 [Otorbaeva D.S., Malysheva M.A., Abdyldaeva S.J. Clinical and epidemiological features of Metapneumovirus infection in the Kyrgyz Republic, week 40, 2022 – week 15, 2024. Healthcare of Kyrgyzstan. 2024; 2: 160–6 (in Russ)]. doi: 10.51350/zdravkg2024.2.6.22.159.165

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2025