Characteristics of the pro-regenerative effect of a bioplastic matrix based on a stabilized extracellular matrix: an experimental study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To evaluate the regenerative potential of a bioplastic material (BPM) based on a soluble form of a stabilized extracellular matrix.

Materials and methods. Using light and fluorescence microscopy, we assessed the morphometric characteristics of cells, using flow cytometry and commercial kits, we assessed the expression of cell differentiation markers (CD16, CD14). Modeling of severe thermal burns was carried out on laboratory rats, in accordance with ethical principles (principles of "3R": replacement, reduction, refinement) under general anesthesia to reduce stress and pain.

Results. BPM is a porous film, the sorption capacity of BPM is 3.5 mg/mg. It was found that when co-incubated with human fibroblasts, BPM does not have a cytotoxic effect. It was revealed that the cultivation of BPM by human peripheral blood monocytes (PBMCh) prevents spontaneous activation of PBMCh into a proinflammatory phenotype. In vivo, it was shown that BPM promotes skin restoration in experimental rats after thermal injury.

Conclusion. Wound dressing based on a soluble form of stabilized extracellular matrix inhibits spontaneous activation of monocytes and their differentiation into a proinflammatory phenotype, stimulates the regeneration of tissues damaged by a thermal burn. At the same time, the effectiveness of the biomaterial exceeds therapy using anti-inflammatory ointment.

Full Text

Restricted Access

About the authors

P. A. Markov

National Medical Research Center for Rehabilitation and Balneology

Author for correspondence.
Email: p.a.markov@mail.ru
ORCID iD: 0000-0002-4803-4803

Candidate of Biological Sciences

Russian Federation, Moscow

P. S. Eremin

National Medical Research Center for Rehabilitation and Balneology

Email: p.a.markov@mail.ru
ORCID iD: 0000-0001-8832-8470
Russian Federation, Moscow

E. A. Rozhkova

National Medical Research Center for Rehabilitation and Balneology

Email: p.a.markov@mail.ru
ORCID iD: 0000-0002-2440-9244

Biol. D.

Russian Federation, Moscow

I. R. Gilmutdinova

National Medical Research Center for Rehabilitation and Balneology

Email: p.a.markov@mail.ru
ORCID iD: 0000-0001-6743-2615

Candidate of Medical Sciences

Russian Federation, Moscow

L. A. Marchenkova

National Medical Research Center for Rehabilitation and Balneology

Email: p.a.markov@mail.ru
ORCID iD: 0000-0003-1886-124X

MD

Russian Federation, Moscow

References

  1. Radzikowska-Büchner E., Łopuszyńska I., Flieger W. et al. An Overview of Recent Developments in the Management of Burn Injuries. Int J Mol Sci. 2023; 24 (22): 16357. doi: 10.3390/ijms242216357
  2. Lagoa T., Queiroga M.C., Martins L. An Overview of Wound Dressing Materials. Pharmaceuticals. 2024; 17 (9): 1110. doi: 10.3390/ph17091110
  3. Марков П.А., Соколов А.С., Артемьева И.А. и др. Коллагеновый гидрогель защищает эпителиальные клетки кишечника от индометацин-индуцированного повреждения: результаты эксперимента in vitro. Вестник восстановительной медицины. 2024; 23 (2): 25–33. [Markov P.A., Sokolov A.S., Artemyeva I.A. et al. Collagen Hydrogel Protects Intestinal Epithelial Cells From Indomethacin-Induced Damage: Results of an in vitro Experiment. Bulletin of Rehabilitation Medicine. 2024; 23 (2): 25–33 (in Russ.)] doi: 10.38025/2078-1962-2024-23-2-25-33
  4. Марков П.А., Еремин П.С., Падерин Н.М. и др. Влияние биопластического материала на адгезию, рост и пролиферативную активность фибробластов человека в средах, имитирующих кислотность раневого ложа при остром и хроническом воспалении. Вестник восстановительной медицины. 2023; 22 (2): 42–51 [Markov P.A., Eremin P.S., Paderin N.M. et al. Effect of Bioplastic Material on Adhesion, Growth and Proliferative Activity of Human Fibroblasts when Incubated in Solutions Mimic the Acidity of Wound an Acute and Chronic Inflammation. Bulletin of Rehabilitation Medicine. 2023; 22 (2): 42–51 (in Russ.)]. doi: 10.38025/2078-1962-2023-22-2-42-51
  5. Su L., Jia Y., Fu L., et al. The emerging progress on wound dressings and their application in clinic wound management. Heliyon. 2023; 9 (12): e22520. doi: 10.1016/j.heliyon.2023.e22520
  6. Васильева В.А., Марченкова Л.А., Ответчикова Д.И. и др. Медицинская реабилитация после травм нижних конечностей у пациентов с сахарным диабетом: обзор литературы. Вестник восстановительной медицины. 2024; 22 (3): 61–8 [Vasileva V.A., Marchenkova L.A., Otvetchikova D.I. et al. Medical Rehabilitation after Lower Limb Injuries in Patients with Diabetes Mellitus: a Review. Bulletin of Rehabilitation Medicine. 2024; 22 (3): 61–8 (in Russ.)]. doi: 10.38025/2078-1962-2024-23-3-61-68
  7. Ziegler-Heitbrock L. Blood Monocytes and Their Subsets: Established Features and Open Questions. Front Immunol. 2015; 17 (6): 423. doi: 10.3389/fimmu.2015.00423
  8. Karsulovic C., Tempio F., Lopez M. et al. In vitro Phenotype Induction of Circulating Monocytes: CD16 and CD163 Analysis. J Inflamm Re. 2021; 26 (14): 191–8. doi: 10.2147/JIR.S292513
  9. Kim. B.S., Kwon. Y.W., Kong J.-S. et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials. 2018; 168: 38–53. doi: 10.1016/j.biomaterials.2018.03.040
  10. Simmons P., McElroy T., Allen, A. R. A Bibliometric Review of Artificial Extracellular Matrices Based on Tissue Engineering Technology Literature: 1990 through 2019. Materials. 2020; 13 (13): 2891. doi: 10.3390/ma13132891
  11. Elfawy L.A., Ng C.Y., Amirrah I.N. et al. Sustainable Approach of Functional Biomaterials-Tissue Engineering for Skin Burn Treatment: A Comprehensive Review. Pharmaceuticals. 2023; 16 (5): 701. DOI: doi.org/10.3390/ph16050701

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mass of bioactive bioplastic material during incubation in Hartmann's solution (M ± SD; n = 7)

Download (45KB)
3. Fig. 2. Protein extraction during incubation of bioactive bioplastic material in Hartmann's solution (М ± SD; n = 7)

Download (52KB)
4. Fig. 3. Effect of bioplastic material on the number of living, apoptotic and dead cells after 48 hours of co-incubation (n = 7)

Download (47KB)
5. Fig. 4. Expression of CD14 and CD16 receptors on PBMCh after 48 hours of incubation with bioplastic material (n = 5)

Download (58KB)
6. Fig. 5. The area of damage to the skin of rats after induced thermal burn; Me (Q1; Q3) (n = 10)

Download (77KB)

Copyright (c) 2024 Russkiy Vrach Publishing House