Changes in progesterone levels in smoking women with impaired bronchial patency during gestation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The use of tobacco products for a long time leads not only to a violation of bronchial dysfunction, but also to a change in the hormonal background in women of fertile age. In a prospective randomized trial of patients attending a prenatal pregnancy clinic, statistically significant changes in progesterone were revealed depending on smoking in different trimesters of gestation, with the maximum sensitivity of the model (p ≤ 0.05) detected in the third trimester of gestation.

Full Text

Restricted Access

About the authors

A. V. Dzyubailo

Samara State Medical University, Ministry of Health of Russia

Author for correspondence.
Email: adzyubajlo@yandex.ru
ORCID iD: 0000-0001-6908-4829
SPIN-code: 8254-7750

Associate Professor, Candidate of Medical Sciences

Russian Federation, Samara

References

  1. Tse H.N., Tseng C.Z. Update on the pathological processes, molecular biology, and clinical utility of N-acetylcysteine in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2014; 9: 825–36. doi: 10.2147/COPD.S51057
  2. Barnes P.J. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014; 35 (1): 71–86. doi: 10.1016/j.ccm.2013.10.004
  3. Barnes P.J. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017; 131 (13): 1541–58. doi: 10.1042/CS20160487
  4. Barnes P.J. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020; 33: 101544. doi: 10.1016/j.redox.2020.101544
  5. Bohr V.A., Stevnsner T., de Souza-Pinto N.C. Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene. 2002; 286 (1): 127–34. doi: 10.1016/s0378-1119(01)00813-7
  6. Bohr V.A. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med. 2002; 32 (9): 804–12. doi: 10.1016/s0891-5849(02)00787-6
  7. Barnes P.J. Transcription factors in airway diseases. Lab Invest. 2006; 86 (9): 867–72. doi: 10.1038/labinvest.3700456
  8. Wu J.P., Wu Q., Sun X. et al. Corticosteroid resistance in chronic obstructive pulmonary disease: new uses of theophylline. Chin Med J (Engl). 2013; 126 (5): 965–70. doi: 10.3760/cma.j.issn.0366-6999.20121391
  9. Afonso V., Champy R., Mitrovic D. et al. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 2007; 74 (4): 324–9. doi: 10.1016/j.jbspin.2007.02.002
  10. Berman S.B., Pineda F.J., Hardwick J.M. Mitochondrial fission and fusion dynamics: the long and short of it. Cell Death Differ. 2008; 15 (7): 1147–52. doi: 10.1038/cdd.2008.57
  11. Jendrach M., Pohl S., Voth M. et al. Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev. 2005; 126 (6–7): 813–21. doi: 10.1016/j.mad.2005.03.002
  12. Saaresranta T., Aittokallio T., Utriainen K. et al. Medroxyprogesterone improves nocturnal breathing in postmenopausal women with chronic obstructive pulmonary disease. Respir Res. 2005; 6 (1): 28. doi: 10.1186/1465-9921-6-28
  13. Wagenaar M., Vos P.J., Heijdra Y.F. et al. Combined treatment with acetazolamide and medroxyprogesterone in chronic obstructive pulmonary disease patients. Eur Respir J. 2002; 20 (5): 1130–7. doi: 10.1183/09031936.02.00016402
  14. Robertson C.L., Puskar A., Hoffman G.E. et al. Physiologic progesterone reduces mitochondrial dysfunction and hippocampal cell loss after traumatic brain injury in female rats. Exp Neurol. 2006; 197 (1): 235–43. doi: 10.1016/j.expneurol.2005.09.014
  15. Gaignard P., Frechou M., Schumacher M. et al. Progesterone reduces brain mitochondrial dysfunction after transient focal ischemia in male and female mice. J Cereb Blood Flow Metab. 2016; 36 (3): 562–8. doi: 10.1177/0271678X15610338
  16. Cai J., Cao S., Chen J. et al. Progesterone alleviates acute brain injury via reducing apoptosis and oxidative stress in a rat experimental subarachnoid hemorrhage model. Neurosci Lett. 2015; 600: 238–43. doi: 10.1016/j.neulet.2015.06.023
  17. Qin Y., Chen Z., Han X. et al. Progesterone attenuates Abeta(25–35)-induced neuronal toxicity via JNK inactivation and progesterone receptor membrane component 1-dependent inhibition of mitochondrial apoptotic pathway. J Steroid Biochem Mol Biol. 2015; 154: 302–11. doi: 10.1016/j.jsbmb.2015.01.002
  18. Gonzalez Deniselle M.C., Carreras M.C., Garay L. et al. Progesterone prevents mitochondrial dysfunction in the spinal cord of wobbler mice. J Neurochem. 2012; 122 (1): 185–95. doi: 10.1111/j.1471-4159.2012.07753.x
  19. Feng Q., Crochet J.R., Dai Q. et al. Expression of a mitochondrial progesterone receptor (PR-M) in leiomyomata and association with increased mitochondrial membrane potential. J Clin Endocrinol Metab. 2014; 99 (3): E390–9. doi: 10.1210/jc.2013-2008
  20. Abohalaka R. Bronchial epithelial and airway smooth muscle cell interactions in health and disease. Heliyon. 2023; 9 (9): 19976. doi: 10.1016/j.heliyon.2023.e19976
  21. Esteves P., Blanc L., Celle A. et al. Crucial role of fatty acid oxidation in asthmatic bronchial smooth muscle remodelling. Eur Respir J. 2021; 58 (5): 2004252. doi: 10.1183/13993003.04252-2020

Supplementary files

Supplementary Files
Action
1. JATS XML
2. ROC curves characterizing the dependence of smoking status on progesterone levels

Download (88KB)

Copyright (c) 2025 Russkiy Vrach Publishing House