Diagnosis of stress and sympathetic activation by parameters of skin conductance: the current state of the method, fields of application and prospects in medicine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article provides a justification for the importance of objectification of stressful conditions in medical institutions. It is noted that in comparison with other biosignals, skin conductance as a form of electrodermal activity (EDA), is a simpler, more accessible, and suitable method for routine practice to assess the state of the sympathetic nervous system, the activation of which plays a leading role in stress. In accordance with the stated goal of studying modern techniques that use EDA signals to understand their capabilities in the diagnosis and correction of stress and other conditions in medicine, the article presents data on literary sources indicating a steadily growing interest in the ED ED method at the present time; describes the physiological mechanisms of formation of EDA signals and ways to measure them, types of electrodes and places of their superposition, types of signal processing, dependence of EDA indicators on environmental factors and individual characteristics; areas and prospects of application in medicine, indicating the high accuracy of the method for determining stress conditions, features of emotional disorders and pain, the possibility of monitoring the condition of patients with epilepsy, severe somatic diseases and in the postoperative period. In conclusion, a description of modern domestic studies using a Stress monitoring System based on EDA registration is given to monitor stroke patients undergoing rehabilitation and the effectiveness of anesthesia after cesarean section, confirming that taking into account EDA indicators can significantly optimize the diagnosis of stress conditions, emotional pathology and pain.

About the authors

A. A. Kuzyukova

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Author for correspondence.
Email: kuzyukovaaa@nmicrk.ru
ORCID iD: 0000-0002-9275-6491

Candidate of Medical Sciences

Russian Federation, Moscow

A. Y. Zagainova

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Email: kuzyukovaaa@nmicrk.ru
ORCID iD: 0000-0003-3987-3901

Candidate of Biological Sciences

Russian Federation, Moscow

O. I. Odarushenko

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Email: kuzyukovaaa@nmicrk.ru
ORCID iD: 0000-0002-0416-3558

Candidate of Psychological Sciences

Russian Federation, Moscow

Ya. G. Pechova

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Email: kuzyukovaaa@nmicrk.ru
ORCID iD: 0000-0002-2754-1021

Candidate of Medical Sciences

Russian Federation, Moscow

L. A. Marchenkova

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Email: kuzyukovaaa@nmicrk.ru
ORCID iD: 0000-0003-1886-124X

MD

Russian Federation, Moscow

A. D. Fesyun

National Medical Research Center for Rehabilitation and Balneology, Ministry of Health of Russia

Email: kuzyukovaaa@nmicrk.ru
ORCID iD: 0000-0003-3097-8889

Associate Professor, MD

Russian Federation, Moscow

References

  1. Эбзеева Е.Ю., Полякова О.А. Стресс и стресс-индуцированные расстройства. Медицинский совет. 2022; 16 (2): 127–33 [Ebzeeva E.Y., Polyakova O.A. Stress and stress-induced disorders. Medical Council. 2022;(2):127-133 (in Russ.)]. doi: 10.21518/2079-701X-2022-16-2-127-133
  2. Есин Р.Г., Есин О.Р., Хакимова А.Р. Стресс-индуцированные расстройства. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020; 120 (5): 131–7 [Esin R.G., Esin O.R., Khakimova A.R. Stress-induced disorders. S.S. Korsakov Journal of Neurology and Psychiatry. 2020; 120 (5): 131–7 (in Russ.)]. doi: 10.17116/jnevro2020120051131
  3. Posada-Quintero H.F., Chon K.H. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors (Basel). 2020; 20 (2): 479. doi: 10.3390/s20020479
  4. Еханин С.Г. Кожно-гальваническая реакция: датчики, приборы, исследования: Методические указания к лабораторному занятию по дисциплине. Биомедицинские приборы и датчики [Электронный ресурс]. Томск: ТУСУР, 2022; 25 с. [Ekhanin S.G. Skin-galvanic reaction: sensors, devices, researches: Methodical instructions to the laboratory session on the discipline. Biomedical devices and sensors [Electronic resource]. Tomsk: TUSUR, 2022; 25 p. (in Russ.)]. URL: https://edu.tusur.ru/publications/9947
  5. Tronstad C., Amini M., Bach D.R. et al.. Current trends and opportunities in the methodology of electrodermal activity measurement. Physiol Meas. 2022; 43 (2). doi: 10.1088/1361-6579/ac5007
  6. Subramanian S., Purdon P.L., Barbieri R. et al. Elementary integrate-and-fire process underlies pulse amplitudes in Electrodermal activity. PLoS Comput Biol. 2021; 17 (7): e1009099. doi: 10.1371/journal.pcbi.1009099
  7. Bhatkar V., Picard R., Staahl C. Combining Electrodermal Activity With the Peak-Pain Time to Quantify Three Temporal Regions of Pain Experience. Front Pain Res (Lausanne). 2022; 3: 764128. doi: 10.3389/fpain.2022.764128
  8. Sánchez-Reolid R., López de la Rosa F., Sánchez-Reolid D. et al. Machine Learning Techniques for Arousal Classification from Electrodermal Activity: A Systematic Review. Sensors (Basel). 2022; 22 (22): 8886. doi: 10.3390/s22228886
  9. McNaboe R.Q., Hossain M.B., Kong Y. et al. Validation of Spectral Indices of Electrodermal Activity with a Wearable Device. Annu Int Conf IEEE Eng Med Biol Soc. 2021; 2021: 6991–4. doi: 10.1109/EMBC46164.2021.9630005
  10. Barman S.M., Kenney M.J. Methods of analysis and physiological relevance of rhythms in sympathetic nerve discharge. Clin Exp Pharmacol Physiol. 2007; 34: 350–5. doi: 10.1111/j.1440-1681.2007.04586.x
  11. Barman S.M., Yate В.J. Deciphering the Neural Control of Sympathetic Nerve Activity: Status Report and Directions for Future Research. Front Neurosci. 2017; 11: 730. doi: 10.3389/fnins.2017.00730
  12. Qasim M.S., Bari D.S., Martinsen Ø.G. Influence of ambient temperature on tonic and phasic electrodermal activity components. Physiol Meas. 2022; 43 (6). doi: 10.1088/1361-6579/ac72f4
  13. Bari D.S., Aldosky H.Y.Y., Tronstad C. et al. Influence of Relative Humidity on Electrodermal Levels and Responses. Skin Pharmacol Physiol. 2018; 31 (6): 298–307. doi: 10.1159/000492275
  14. Aldosky H.Y. Impact of obesity and gender differences on electrodermal activities. Gen Physiol Biophys. 2019; 38 (6): 513–8. doi: 10.4149/gpb_2019036
  15. Bari D.S., Yacoob Aldosky H.Y. et al. Simultaneous measurement of electrodermal activity components correlated with age-related differences. J Biol Phys. 2020; 46 (2): 177–88. doi: 10.1007/s10867-020-09547-4
  16. Chong L.S., Lin B., Gordis E. Racial differences in sympathetic nervous system indicators: Implications and challenges for research. Biol Psychol. 2023; 177: 108496. doi: 10.1016/j.biopsycho.2023.108496
  17. Hickey B.A., Chalmers T., Newton P. et al. Smart Devices and Wearable Technologies to Detect and Monitor Mental Health Conditions and Stress: A Systematic Review. Sensors (Basel). 2021; 21 (10): 3461. doi: 10.3390/s21103461
  18. Rahma O.N., Putra A.P., Rahmatillah A. et al. Electrodermal Activity for Measuring Cognitive and Emotional Stress Level. J Med Signals Sens. 2022; 12 (2): 155–62. doi: 10.4103/jmss.JMSS_78_20
  19. Almadhor A., Sampedro G.A., Abisado M. et al. Wrist-Based Electrodermal Activity Monitoring for Stress Detection Using Federated Learning. Sensors (Basel). 2023; 23 (8): 3984. doi: 10.3390/s23083984
  20. Klimek A., Mannheim I., Schouten G. et al. Wearables measuring electrodermal activity to assess perceived stress in care: a scoping review. Acta Neuropsychiatr. 2023; 1–11. doi: 10.1017/neu.2023.19
  21. Posada-Quintero H.F., Florian J.P., Orjuela-Cañón A.D. et al.. Electrodermal Activity Is Sensitive to Cognitive Stress under Water. Front Physiol. 2018; 8: 1128. doi: 10.3389/fphys.2017.01128
  22. Wincewicz K., Nasierowski T. Electrodermal activity and suicide risk assessment in patients with affective disorders. Psychiatr Pol. 2020; 54 (6): 1137–47. doi: 10.12740/PP/110144
  23. Пудиков И.В. Диагностика риска суицидального поведения по динамическим показателям электродермальной реакции. Военно-медицинский журнал. 2023; 344 (10): 41–6 [Pudikov I.V. Diagnosis of the risk of suicidal behavior by dynamic indicators of the electrodermal reaction. Voenno-medicinskij žurnal. 2023; 344 (10): 41–6 (in Russ.)]. doi: 10.52424/00269050_2023_344_10_41
  24. Carli V., Hadlaczky G., Petros N.G. et al. European Multi-Center Clinical Study of Electrodermal Reactivity and Suicide Risk Among Patients With Depression. Front Psychiatry. 2022; 12: 765128. doi: 10.3389/fpsyt.2021.765128
  25. Anmella G., Mas A., Sanabra M. et al. Electrodermal activity in bipolar disorder: Differences between mood episodes and clinical remission using a wearable device in a real-world clinical setting. J Affect Disord. 2024; 345: 43–50. doi: 10.1016/j.jad.2023.10.125
  26. Schiltz H.K., Fenning R.M., Erath S.A. et al. Electrodermal Activity Moderates Sleep-Behavior Associations in Children with Autism Spectrum Disorder. Res Child Adolesc Psychopathol. 2022; 50 (6): 823–35. doi: 10.1007/s10802-022-00900-w
  27. Visnovcova Z., Ferencova N., Grendar M. et al. Electrodermal activity spectral and nonlinear analysis - potential biomarkers for sympathetic dysregulation in autism. Gen Physiol Biophys. 2022; 41 (2): 123–31. doi: 10.4149/gpb_2022011
  28. Schach S., Rings T., Bregulla M. et al. Electrodermal Activity Biofeedback Alters Evolving Functional Brain Networks in People With Epilepsy, but in a Non-specific Manner. Front Neurosci. 2022; 16: 828283. doi: 10.3389/fnins.2022.828283
  29. Horinouchi T., Sakurai K., Munekata N. et al. Decreased electrodermal activity in patients with epilepsy. Epilepsy Behav. 2019; 100 (Pt A): 106517. doi: 10.1016/j.yebeh.2019.106517
  30. Vieluf S., Amengual-Gual M., Zhang B. et al. Twenty-four-hour patterns in electrodermal activity recordings of patients with and without epileptic seizures. Epilepsia. 2021; 62 (4): 960–72. doi: 10.1111/epi.16843
  31. Casanovas Ortega M., Bruno E., Richardson M.P. Electrodermal activity response during seizures: A systematic review and meta-analysis. Epilepsy Behav. 2022; 134: 108864. doi: 10.1016/j.yebeh.2022.108864
  32. Sebastião R., Bento A., Brás S. Analysis of Physiological Responses during Pain Induction. Sensors (Basel). 2022; 22 (23): 9276. doi: 10.3390/s22239276
  33. Thiam P., Bellmann P., Kestler H.A. et al. Exploring Deep Physiological Models for Nociceptive Pain Recognition. Sensors (Basel). 2019; 19 (20): 4503. doi: 10.3390/s19204503
  34. Kong Y., Posada-Quintero H.F., Chon K.H. Sensitive Physiological Indices of Pain Based on Differential Characteristics of Electrodermal Activity. IEEE Trans Biomed Eng. 2021; 68 (10): 3122–30. doi: 10.1109/TBME.2021.3065218
  35. Johansen A.O., Mølgaard J., Rasmussen S.S. et al. Deviations in continuously monitored electrodermal activity before severe clinical complications: a clinical prospective observational explorative cohort study. J Clin Monit Comput. 2023; 37 (6): 1573–84. doi: 10.1007/s10877-023-01030-4
  36. Kuderava Z., Kozar M., Visnovcova Z. et al. Sympathetic nervous system activity and pain-related response indexed by electrodermal activity during the earliest postnatal life in healthy term neonates. Physiol Res. 2023; 72 (3): 393–401. doi: 10.33549/physiolres.935061
  37. Упрямова Е.Ю., Шифман Е.М., Дегтярев П.А. и др. Оценка качества послеоперационного обезболивания после кесарева сечения по данным системы мониторинга стрессовых состояний: проспективное одноцентровое рандомизированное клиническое сравнительное исследование. Регионарная анестезия и лечение острой боли. 2023; 17 (4): 267–77 [Upryamova E.Y., Shifman E.M., Degtyarev P.A. et al. Postoperative pain relief quality after cesarean section using a stress monitor (Neon FSC system): prospective single-center randomized clinical comparative study. Regional Anesthesia and Acute Pain Management. 2023; 17 (4): 267–77 (in Russ.)]. doi: 10.17816/RA608168
  38. Кузюкова А.А., Рачин А.П., Колышенков В.А. Мониторинг электродермальной активности для определения стрессовых состояний, эмоциональных нарушений и эффективности проводимых реабилитационных мероприятий по их коррекции у пациентов с инсультами: пилотное исследование. Вестник Восстановительной медицины. 2022; 21 (6): 19–29 [Kuzyukova A.A., Rachin A.P., Kolyshenkov V.A. Electrodermal Activity Monitoring for Stroke Patients Stress States, Еmotional Disturbances, Rehabilitation Measures Effectiveness Specification: a Pilot Study. Bulletin of Rehabilitation Medicine. 2022; 21 (6): 19–29 (in Russ.)]. doi: 10.38025/2078-1962-2022-21-6-19-29

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies