Clinical application of Raman spectroscopy in gynecology
- 作者: Lystsev D.V.1, Kaptilny V.A.1, Zuev V.M.1, Chilova R.A.1
-
隶属关系:
- Sechenov First Moscow State Medical University
- 期: 卷 36, 编号 3 (2025)
- 页面: 17-19
- 栏目: Lecture
- URL: https://journals.eco-vector.com/0236-3054/article/view/678068
- DOI: https://doi.org/10.29296/25877305-2025-03-03
- ID: 678068
如何引用文章
详细
Existing screening and diagnostic methods for some gynecological pathologies have limited diagnostic accuracy due to invasiveness, high cost and labor intensity, as well as the need to use complex approaches to establish a final diagnosis. In recent years, the attention of researchers has been attracted by spectroscopic methods, in particular Raman spectroscopy, which opens up new prospects in the diagnosis of a number of gynecological diseases.
全文:

作者简介
D. Lystsev
Sechenov First Moscow State Medical University
编辑信件的主要联系方式.
Email: rchilova@gmail.com
ORCID iD: 0009-0006-3826-3174
俄罗斯联邦, Moscow
V. Kaptilny
Sechenov First Moscow State Medical University
Email: rchilova@gmail.com
ORCID iD: 0000-0002-2656-132X
SPIN 代码: 4312-3455
Candidate of Medical Sciences
俄罗斯联邦, MoscowV. Zuev
Sechenov First Moscow State Medical University
Email: rchilova@gmail.com
ORCID iD: 0000-0001-8715-2020
SPIN 代码: 2857-0309
MD, Professor
俄罗斯联邦, MoscowR. Chilova
Sechenov First Moscow State Medical University
Email: rchilova@gmail.com
ORCID iD: 0000-0001-6331-3109
SPIN 代码: 4137-4848
MD, Professor
俄罗斯联邦, Moscow参考
- Ong T.T., Blanch E.W., Jones O.A. Surface Enhanced Raman Spectroscopy in Environmental Analysis, Monitoring and Assessment. Sci Total Environ. 2020; 720: 137601. doi: 10.1016/j.scitotenv.2020.137601
- Nicolson F., Kircher M.F., Stone N. et al. Spatially Offset Raman Spectroscopy for Biomedical Applications. Chem Soc Rev. 2021; 50: 556–68. doi: 10.1039/d0cs00855a
- Baker M.J., Hussain S.R., Lovergne L. et al. Developing and Understanding Biofluid Vibrational Spectroscopy: A Critical Review. Chem Soc Rev. 2016; 45: 1803–18. doi: 10.1039/c5cs00585j
- Shrivastava A., Aggarwal L.M., Krishna C.M. et al. Diagnostic and Prognostic Application of Raman Spectroscopy in Carcinoma Cervix: A Biomolecular Approach. Spectrochim Acta A Mol Biomol Spectrosc. 2021; 250: 119356. doi: 10.1016/j.saa.2020.119356
- Lu D., Ran M., Liu Y. et al. SERS Spectroscopy Using Au-Ag Nanoshuttles and Hydrophobic Paper-Based Au Nanoflower Substrate for Simultaneous Detection of Dual Cervical Cancer-Associated Serum Biomarkers. Anal Bioanal Chem. 2020; 412 (26): 7099–112. doi: 10.1007/s00216-020-02843-x
- Karunakaran V., Saritha V.N., Joseph M.M. et al. Diagnostic Spectro-Cytology Revealing Differential Recognition of Cervical Cancer Lesions by Label-Free Surface Enhanced Raman Fingerprints and Chemometrics. Nanomedicine. 2020; 29: 102276. doi: 10.1016/j.nano.2020.102276
- Traynor D., Duraipandian S., Bhatia R. et al. The Potential of Biobanked Liquid Based Cytology Samples for Cervical Cancer Screening Using Raman Spectroscopy. J Biophotonics. 2019; 12 (7): e201800377. doi: 10.1002/jbio.201800377
- Jusman Y., Isa N.A.M., Ng S.-C. et al. Automated Cervical Precancerous Cells Screening System Based on Fourier Transform Infrared Spectroscopy Features. J Biomed Opt. 2016; 21 (7): 75005. doi: 10.1117/1.JBO.21.7.075005
- Ramos I.R., Meade A.D., Ibrahim O. et al. Raman Spectroscopy for Cytopathology of Exfoliated Cervical Cells. Faraday Discuss. 2016; 187: 187–98. doi: 10.1039/c5fd00197h
- Wang J., Zheng C.X., Ma C.L. et al. Raman Spectroscopic Study of Cervical Precancerous Lesions and Cervical Cancer. Lasers Med Sci. 2021; 36 (9): 1855–64. doi: 10.1007/s10103-020-03218-5
- Zhang H., Cheng C., Gao R. et al. Rapid Identification of Cervical Adenocarcinoma and Cervical Squamous Cell Carcinoma Tissue Based on Raman Spectroscopy Combined with Multiple Machine Learning Algorithms. Photodiagnosis Photodyn Ther. 2021; 33: 102104. doi: 10.1016/j.pdpdt.2020.102104
- Zheng C., Qing S., Wang J. et al. Diagnosis of Cervical Squamous Cell Carcinoma and Cervical Adenocarcinoma Based on Raman Spectroscopy and Support Vector Machine. Photodiagnosis Photodyn Ther. 2019; 27: 156–61. doi: 10.1016/j.pdpdt.2019.05.029
- Daniel A., Prakasarao A., Ganesan S. Near-Infrared Raman Spectroscopy for Estimating Biochemical Changes Associated with Different Pathological Conditions of Cervix. Spectrochim Acta A Mol Biomol Spectrosc. 2018; 190: 409–16. doi: 10.1016/j.saa.2017.09.014
- Daniel A., Prakasarao A., Dornadula K. et al. Polarized Raman Spectroscopy Unravels the Biomolecular Structural Changes in Cervical Cancer. Spectrochim Acta A Mol Biomol Spectrosc. 2016; 152: 58–63. doi: 10.1016/j.saa.2015.06.053
- Liang X., Miao X., Xiao W. et al. Filter- Membrane-Based Ultrafiltration Coupled with Surface-Enhanced Raman Spectroscopy for Potential Differentiation of Benign and Malignant Thyroid Tumors from Blood Plasma. Int J Nanomedicine. 2020; 15: 2303–14. doi: 10.2147/IJN.S233663
- Paraskevaidi M., Morais C.L.M., Ashton K.M. et al. Detecting Endometrial Cancer by Blood Spectroscopy: A Diagnostic Cross-Sectional Study. Cancers (Basel). 2020; 12 (5): 1256. doi: 10.3390/cancers12051256
- Perumal J., Mahyuddin A., Balasundaram G. et al. SERS-Based Detection of Haptoglobin in Ovarian Cyst Fluid as a Point-of-Care Diagnostic Assay for Epithelial Ovarian Cancer. Cancer Manag Res. 2019; 11: 1115–24. doi: 10.2147/CMAR.S185375
- Paraskevaidi M., Ashton K.M., Stringfellow H.F. et al. Raman Spectroscopic Techniques to Detect Ovarian Cancer Biomarkers in Blood Plasma. Talanta. 2018; 189: 281–8. doi: 10.1016/j.talanta.2018.06.084
- Theophilou G., Lima K.M.G., Martin-Hirsch P.L. et al. ATR-FTIR Spectroscopy Coupled with Chemometric Analysis Discriminates Normal, Borderline and Malignant Ovarian Tissue: classifying Subtypes of Human Cancer. Analyst. 2016; 141: 585–94. doi: 10.1039/C5AN00939A
补充文件
