FOLIC ACID DOSAGE BEFORE, DURING, AND AFTER PREGNANCY: TO DOT THE I'S AND CROSS THE T'S


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Evidence-based studies have repeatedly confirmed the efficiency of using folic acid preparations (in combination with other vitamins in particular) to prevent pregnancy pathologies and fetal malformations. To determine the folic acid dosage that is really effective for the entire population of pregnant women is the most pressing problem of practical obstetrics. This article’s systematized analysis of the results of clinical and epidemiological evidence-based studies has indicated that the folic acid dose that is minimally effective for the prevention of malformations and pregnancy pathologies is 400μg/day. The optimal doses covering the needs of the entire population of pregnant women are 800 μg/day (but not more than 1000 μg/day). The administration of folic acid, beginning during preconception (desirably 2.3 months prior to conception), in combination with other essential micronutrients is more acceptable in terms of the prevention of malformations.

Full Text

Restricted Access

About the authors

Olga Alekseevna GROMOVA

Russian Satellite Center of Trace Element Institute for UNESCO; Ivanovo State Medical Academy, Ministry of Health of the Russian Federation

Email: unesco/gromova@gmail.com
consultant; MD, professor 153000, Russia, Ivanovo, Sheremetiev pr. 8

Olga Adolfovna LIMANOVA

Russian Satellite Center of Trace Element Institute for UNESCO; Ivanovo State Medical Academy, Ministry of Health of the Russian Federation

Consultant; MD, assistant professor of Pharmacology and Clinical Pharmacology 153000, Russia, Ivanovo, Sheremetievsky Prospect 8

Ivan Yurievich TORSHIN

Russian Satellite Center of Trace Element Institute for UNESCO

Candidate of physico-mathematical sciences, assoc. prof., consultant 109652, Russia, Moscow, Bol. Tichinskyi 26

Nadezhda Vyacheslavovna KERIMKULOVA

Russian Satellite Center of Trace Element Institute for UNESCO; Ivanovo State Medical Academy, Ministry of Health of the Russian Federation

consultant; Ph.D., Assoc., Head. Department of Obstetrics and Gynecology 153000, Russia, Ivanovo, Sheremetievsky Prospect 8

Konstantin Vladimirovich RUDAKOVA

Dorodnitsyn’s Computing Center of RAS

corresponding member, RAS, head of the Department of Intellectual Systems

References

  1. Цейцель Э. Первичная профилактика врожденных дефектов: поливитамины или фолиевая кислота? Гинекология. 2012; 5: 38-46
  2. Czeizel A.E., Dudas I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 1992; 327: 1832-5.
  3. Czeizel A.E. Prevention of congenital abnormalities by periconceptional multivitamin supplementation. Br. Med. J. 1993; 306: 1645-8.
  4. Czeizel A.E. Reduction of urinary tract and cardiovascular defects by periconceptional multivitamin supplementation. Am. J. Med. Genet. 1996; 62: 179-83.
  5. Czeizel A.E. Periconceptional folic acid-containing multivitamin supplementation. Eur. J. Obstet. Gynecol. Reprod. Biol. 1998; 75(2): 151-61.
  6. Mastroiacovo P., Leoncini E. More folic acid, the five questions: why, who, when, how much, and how. Biofactors. 2011; 37(4): 272-9.
  7. Bailey H.D., Miller M., Langridge A., de Klerk N.H., van Bockxmeer F.M., Attia J. et al. Maternal dietary intake of folate and vitamins B6 and B12 during pregnancy and the risk of childhood acute lymphoblastic leukemia. Nutr. Cancer. 2012; 64(7): 1122-30.
  8. Forman J.P., Rimm E.B., Stampfer M.J., Curhan G.C. Folate intake and the risk of incident hypertension among US women. JAMA. 2005; 293(3): 320-9.
  9. Evidence-Based Medicine Working Group. Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA. 1992; 268(17): 2420-5.
  10. Рудаков К.В., Торшин И.Ю. Анализ информативности мотивов на основе критерия разрешимости в задаче распознавания вторичной структуры белка. Информатика и ее применения. 2012; 6(1): 79-90.
  11. Рудаков К.В., Торшин И.Ю. Об отборе информативных значений признаков на базе критериев разрешимости в задаче распознавания вторичной структуры белка. Доклады Академии наук. 2011; 441(1): 24-8
  12. Torshin I.Y. The study of the solvability of the genome annotation problem on sets of elementary motifs. Pattern Recognition and Image Analysis. 2011; 21(4): 652-62.
  13. Журавлёв Ю.И., Рудаков К.В., Торшин И.Ю. Алгебраические критерии локальной разрешимости и регулярности как инструмент исследования морфологии аминокислотных последовательностей. В кн.: Труды Московского физико-технического института. М.; 2011; 3(4): 45-54.
  14. Torshin I.Yu. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. New York, USA: Nova Biomedical Books; 2009.
  15. Громова О.А., Торшин И.Ю., Рудаков К.В., Грустливая У.Е., Калачева А.Г., Юдина Н.В. и др. Недостаточность магния - достоверный фактор риска коморбидных состояний: результаты крупномасштабного скрининга магниевого статуса в регионах России. Фарматека. 2013; 6: 116-29.
  16. Shakur Y.A., Garriguet D., Corey P., O’Connor D.L. Folic acid fortification above mandated levels results in a low prevalence of folate inadequacy among Canadians. Am. J. Clin. Nutr. 2010; 92(4): 818-25.
  17. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA), 2009. Scientific Opinion on the substantiation of health claims related to folate and blood formation (ID 79), homocysteine metabolism (ID 80), energy-yielding metabolism (ID 90), function of the immune system (ID 91), function of blood vessels (ID 94, 175, 192), cell division (ID 193), and maternal tissue growth during pregnancy (ID 2882) pursuant to Article 13(1) of Regulation (EC) No 1924/2006 on request from the European Commission. EFSA Journal. 2009; 7(9): 1225.
  18. Van Rooij I.A., Ocké M.C., Straatman H., Zielhuis G.A., Merkus H.M., Steegers-Theunissen R.P. Periconceptional folate intake by supplement and food reduces the risk of nonsyndromic cleft lip with or without cleft palate. Prev. Med. 2004; 39(4): 689-94.
  19. Moore L.L., Bradlee M.L., Singer M.R., Rothman K.J., Milunsky A. Folate intake and the risk of neural tube defects: an estimation of dose-response. Epidemiology. 2003; 14(2): 200-5.
  20. Bower C., Stanley F.J. Dietary folate as a risk factor for neural-tube defects: evidence from a case-control study in Western Australia. Med. J. Aust. 1989; 150(11): 613-9.
  21. Colapinto C.K., O’Connor D.L., Dubois L., Tremblay M.S. Folic acid supplement use is the most significant predictor of folate concentrations in Canadian women of childbearing age. Appl. Physiol. Nutr. Metab. 2012; 37(2): 284-92.
  22. Kondo A., Asada Y., Shibata K., Kihira M., Ninomiya K., Suzuki M. et al. Dietary folate intakes and effects of folic acid supplementation on folate concentrations among Japanese pregnant women. J. Obstet. Gynaecol. Res. 2011; 37(4): 331-6.
  23. Bailey L.B. New standard for dietary folate intake in pregnant women. Am. J. Clin. Nutr. 2000; 71(5, Suppl.): 1304S-7S.
  24. Pietrzik K., Lamers Y., Brämswig S., Prinz-Langenohl R. Calculation of red blood cell folate steady state conditions and elimination kinetics after daily supplementation with various folate forms and doses in women of childbearing age. Am. J. Clin. Nutr. 2007; 86(5): 1 414-9.
  25. Hursthouse N.A., Gray A.R., Miller J.C., Rose M.C., Houghton L.A. Folate status of reproductive age women and neural tube defect risk: the effect of long-term folic acid supplementation at doses of 140 microg and 400 microg per day. Nutrients. 2011; 3(1): 49-62.
  26. Bradbury K.E., Williams S.M., Green T.J., McMahon J.A., Mann J.I., Knight R.G., Skeaff C.M. Differences in erythrocyte folate concentrations in older adults reached steady-state within one year in a two-year, controlled, 1 mg/d folate supplementation trial. J. Nutr. 2012; 142(9): 1633-7.
  27. Brämswig S., Prinz-Langenohl R., Lamers Y., Tobolski O., Wintergerst E., Berthold H.K., Pietrzik K. Supplementation with a multivitamin containing 800 microg of folic acid shortens the time to reach the preventive red blood cell folate concentration in healthy women. Int. J. Vitam. Nutr. Res. 2009; 79(2): 61-70.
  28. Hung J., Yang T.L., Urrutia T.F., Li R., Perry C.A., Hata H. et al. Additional food folate derived exclusively from natural sources improves folate status in young women with the MTHFR 677 CC or TT genotype. J. Nutr. Biochem. 2006; 17(11): 728-34.
  29. Hao L., Yang Q.H., Li Z., Bailey L.B., Zhu J.H., Hu D.J. et al. Folate status and homocysteine response to folic acid doses and withdrawal among young Chinese women in a large-scale randomized double-blind trial. Am. J. Clin. Nutr. 2008; 88(2): 448-57.
  30. Mackey A.D., Picciano M.F. Maternal folate status during extended lactation and the effect of supplemental folic acid. Am. J. Clin. Nutr. 1999; 69(2): 285-92.
  31. Winkels R.M., Brouwer I.A., Verhoef P., van Oort F.V., Durga J., Katan M.B. Gender and body size affect the response of erythrocyte folate to folic acid treatment. J. Nutr. 2008; 138(8): 1456-61.
  32. Mojtabai R. Body mass index and serum folate in childbearing age women. Eur. J. Epidemiol. 2004; 19(11): 1029-36.
  33. Navarrete-Muñoz E.M., Giménez Monzó D., García de La Hera M., Climent M.D., Rebagliato M., Murcia M. et al. Folic acid intake from diet and supplements in a population of pregnant women in Valencia, Spain. Med. Clin. (Barc). 2010; 135(14): 637-43. doi: 10.1016/j.medcli. 2010.03.033.
  34. Bower C., Miller M., Payne J., Serna P. Promotion of folate for the prevention of neural tube defects: who benefits? Paediatr. Perinat. Epidemiol. 2005; 19(6): 435-44.
  35. Schwarz E.B., Sobota M., Gonzales R., Gerbert B. Computerized counseling for folate knowledge and use: a randomized controlled trial. Am. J. Prev. Med. 2008; 35(6): 568-71.
  36. Sweeney M.R., McPartlin J., Weir D.G., Daly L., Scott J.M. Postprandial serum folic acid response to multiple doses of folic acid in fortified bread. Br. J. Nutr. 2006; 95(1): 145-51.
  37. Quinlivan E.P., Gregory J.F. 3rd. Effect of food fortification on folic acid intake in the United States. Am. J. Clin. Nutr. 2003; 77(1): 221-5.
  38. Pfeiffer C.M., Hughes J.P., Lacher D.A., Bailey R.L., Berry R.J., Zhang M. et al. Estimation of trends in serum and RBC folate in the U.S. population from pre- to postfortification using assay-adjusted data from the NHANES 1988-2010. J. Nutr. 2012; 142(5): 886-93.
  39. Громова О.А., Торшин И.Ю., Рудаков К.В. Клиническая и молекулярная фармакология фолиевой кислоты. Фолаты для беременных - все точки над „i”. Клиническая фармакология и фармакоэкономика. 2010; 3(1): 38-47.
  40. Torshin I.Yu. Bioinformatics in the post-genomic era: physiology and medicine. New York, USA: Nova Biomedical Books; 2007.
  41. Громова О.А., Торшин И.Ю. Витамины и минералы: между Сциллой и Харибдой. М.: МЦНМО; 2013. 764 с.
  42. Venn B.J., Mann J.I., Williams S.M., Riddell L.J., Chisholm A., Harper M.J., Aitken W. Dietary counseling to increase natural folate intake: a randomized, placebo-controlled trial in free-living subjects to assess effects on serum folate and plasma total homocysteine. Am. J. Clin. Nutr. 2002; 76(4): 758-65.
  43. Tighe P., Ward M., McNulty H., Finnegan O., Dunne A., Strain J. et al. A dose-finding trial of the effect of long-term folic acid intervention: implications for food fortification policy. Am. J. Clin. Nutr. 2011; 93(1): 11-8.
  44. Anderson C.A., Jee S.H., Charleston J., Narrett M., Appel L.J. Effects of folic acid supplementation on serum folate and plasma homocysteine concentrations in older adults: a dose-response trial. Am. J. Epidemiol. 2010; 172(8): 932-41.
  45. Van Oort F.V., Melse-Boonstra A., Brouwer I.A., Clarke R., West C.E., Katan M.B., Verhoef P. Folic acid and reduction of plasma homocysteine concentrations in older adults: a dose-response study. Am. J. Clin. Nutr. 2003; 77(5): 1318-23.46.
  46. Homocysteine Lowering Trialists’ Collaboration. Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am. J. Clin. Nutr. 2005; 82(4): 806-12.
  47. Abratte C.M., Wang W., Li R., Moriarty D.J., Caudill M.A. Folate intake and the MTHFR C677T genotype influence choline status in young Mexican American women. J. Nutr. Biochem. 2008; 9(3): 158-65.
  48. Melse-Boonstra A., Holm P.I. Betaine concentration as a determinant of fasting total homocysteine concentrations and the effect of folic acid supplementation on betaine concentrations. Am. J. Clin. Nutr. 2005; 81(6): 1378-82.
  49. Chiuve S.E., Giovannucci E.L., Hankinson S.E., Zeisel S.H., Dougherty L.W., Willett W.C., Rimm E.B. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am. J. Clin. Nutr. 2007; 86(4): 1073-81.
  50. Lajous M., Romieu I., Sabia S., Boutron-Ruault M.C., Clavel-Chapelon F. Folate, vitamin B12 and postmenopausal breast cancer in a prospective study of French women. Cancer Causes Control. 2006;17(9): 1209-13.
  51. Kim D.H., Smith-Warner S.A., Spiegelman D., Yaun S.S., Colditz G.A. Pooled analyses of 13 prospective cohort studies on folate intake and colon cancer. Cancer Causes Control. 2010; 21(11): 1919-30.
  52. Durga J., Verhoef P., Anteunis L.J., Schouten E., Kok F.J. Effects of folic acid supplementation on hearing in older adults: a randomized, controlled trial. Ann. Intern. Med. 2007; 146(1): 1-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies