Molecular genetic markers of recurrent candidiasis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Vulvovaginal candidiasis (VVC) is a very widespread disease in women and is common in persons with immunodeficiency. According to different authors, VVC is diagnosed in 30-40% of the women complaining of genital tract discharge. Despite the fact that Candida is a commensal and colonizes the human skin and mucosae, it may result in skin and mucosal injuries and/or generalized infection and, if there are risk factors, the disease may be recurrent. However, recurrent VVC was observed in some cases without apparent risk factors, which may suggest that genetic disorders play a role in an anti- Candida immune response. The polymorphisms in different genes (STAT1, STAT3, CARD9, Dectinl, etc.), which are responsible for chronic/recurrent infection with Candida, were identified. The microorganism’s specific features, such as pathogenicity and virulence factors and antifungal drug resistance, also play an important role in the development of recurrent Candida infection. And only a comprehensive, detailed study of the problem will be able to give an insight into the pathogenesis of the disease and hence to choose an optimal and more sound treatment policy.

Full Text

Restricted Access

About the authors

Elena A. Mezhevitinova

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russia

Email: e_mezhevitinova@oparina4.ru
MD

Vera N. Prilepskaya

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russia

Email: v_prilepskaya@oparina4.ru
MD, Professor

Andrew E. Donnikov

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russia

Email: a_donnikov@oparina4.ru
PhD

Shaqeh M. Pogosyan

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russia

Email: shaqpoxos@mail.ru
postgraduate

Patimat R. Abakarova

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russia

Email: p_abakarova@oparina4.ru
PhD

Tatiana V. Brovkina

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russia

Email: t_brovkina@oparina4.ru
postgraduate

Alla A. Pavlova

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russia

Email: a_pavlova@oparina4.ru
postgraduate

Yulia S. Khlebkova

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russia

Email: y_khlebkova@oparina4.ru
postgraduate

References

  1. Wang L., Tong Z, Wang Z., Xu L., Wu Y., Liu Y., Wu L. Single-center retrospective study of the incidence of, and risk factors for, non-C. albicans invasive candidiasis in hospitalized patients in China. Med. Mycol. 2014; 52(2): 115-22.
  2. Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. 2014; 10: 95-105.
  3. Foxman B., Muraglia R., Dietz J.P., Sobel J.D., Wagner J. Prevalence of recurrent vulvovaginal candidiasis in 5 European countries and the United States: results from an internet panel survey. J. Low. Genit. Tract Dis. 2013; 17(3): 340-5.
  4. Beikert F.C., Le M.T., Koeninger A., Technau K., Clad A. Recurrent vulvovaginal candidosis: focus on the vulva. Mycoses. 2011; 54(6): e807-10.
  5. Staniszewska M., Bondaryk M., Pilat J., Siennicka K., Magda U., Kurzatkowski W. Virulence factors of Candida albicans. Przegl. Epidemiol. 2012; 66(4): 629-33.
  6. Naglik J.R., Moyes D., Makwana J., Kanzaria P., Tsichlaki E., Weindl G. et al. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology. 2008; 154(11): 3266-80.
  7. Gow N.A., van de Veerdonk F.L., Brown A.J., Netea M.G. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 2012; 10(2): 112-22.
  8. Ferwerda B., Ferwerda G., Plantinga T.S., Willment J.A., van Spriel A. B., Venselaar H. et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 2009; 361(18): 1760-7.
  9. Rosentul D.C., Plantinga T.S., Oosting M., Scott W.K., Velez Edwards D. R., Smith P.B. et al. Genetic variation in the dectin-1/CARD9 recognition pathway and susceptibility to candidemia. J. Infect. Dis. 2011; 204(7): 1138-45.
  10. Plantinga T.S., van der Velden W.J., Ferwerda B., van Spriel A.B., Adema G., Feuth T. et al. Early stop polymorphism in human DECTIN-1 is associated with increased candida colonization in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 2009; 49(5): 724-32.
  11. Glocker E.O., Hennigs A., Nabavi M., Schaffer A.A., Woellner C., Salzer U. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 2009; 361(18): 1727-35.
  12. Plantinga T.S., Johnson M.D., Scott W.K., van de Vosse E., Velez Edwards D.R., Smith P.B. et al. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J. Infect. Dis. 2012; 205(6): 934-43.
  13. Smeekens S.P., van de Veerdonk F.L., Kullberg B.J., Netea M.G. Genetic susceptibility to Candida infections. EMBO Mol. Med. 2013; 5(6): 805-13.
  14. Nahum A., Dadi H., Bates A., Roifman C.M. The L412F variant of Tolllike receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J. Allergy Clin. Immunol. 2011; 127(2): 528-31.
  15. Gaffen S.L., Hernandez-Santos N., Peterson A. C. IL-17 signaling in host defense against Candida albicans. Immunol. Res. 2011; 50(2-3): 181-7.
  16. Acosta-Rodriguez E.V., Napolitani G., Lanzavecchia A., Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 2007; 8(9): 942-9.
  17. Wilson N.J., Boniface K., Chan J.R., McKenzie B.S., Blumenschein W. M., Mattson J.D. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol. 2007; 8(9): 950-7.
  18. Volpe E., Servant N., Zollinger R., Bogiatzi S.I., Hupe P., Barillot E., Soumelis V. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat. Immunol. 2008; 9(6): 650-7.
  19. Yang X.O., Pappu B.P., Nurieva R., Akimzhanov A., Kang H.S., Chung Y. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008; 28(1): 29-39.
  20. Ichiyama K., Yoshida H., Wakabayashi Y., Chinen T., Saeki K., Nakaya M. et al. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J. Biol. Chem. 2008; 283(25): 17003-8.
  21. Zhou L., Lopes J.E., Chong M.M., Ivanov I.I., Min R., Victora G.D. et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008; 453(7192): 236-40.
  22. Takimoto T., Wakabayashi Y., Sekiya T., Inoue N., Morita R., Ichiyama K. et al. Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. J. Immunol. 2010; 185(2): 842-55.
  23. Lee Y., Awasthi A., Yosef N., Quintana F.J., Xiao S., Peters A. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 2012; 13(10): 991-9.
  24. Yang X.O., Nurieva R., Martinez G.J., Kang H.S., Chung Y., Pappu B. P. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 2008; 29(1): 44-56.
  25. Zhang F., Meng G., Strober W. Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 2008; 9(11): 1297-306.
  26. Dang E.V., Barbi J., Yang H.Y., Jinasena D., Yu H., Zheng Y. et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011; 146(5): 772-84.
  27. Majmundar A.J., Wong W.J., Simon M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell. 2010; 40(2): 294-309.
  28. Shi L.Z., Wang R., Huang G., Vogel P., Neale G., Green D.R., Chi H. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 2011; 208(7): 1367-76.
  29. Yang X.P., Ghoreschi K., Steward-Tharp S.M., Rodriguez-Canales J., Zhu J., Grainger J.R. et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat. Immunol. 2011; 12(3): 247-54.
  30. Marwaha A.K., Leung N.J., McMurchy A.N., Levings M.K. TH17 cells in autoimmunity and immunodeficiency: protective or pathogenic? Front. Immunol. 2012; 3: 129.
  31. Kolls J.K., Khader S.A. The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev. 2010; 21(6): 443-8.
  32. Kurebayashi Y., Nagai S., Ikejiri A., Koyasu S. Recent advances in understanding the molecular mechanisms of the development and function of Th17 cells. Genes Cells. 2013; 18(4): 247-65.
  33. Milner J.D., Brenchley J.M., Laurence A., Freeman A.F., Hill B.J., Elias K.M. et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008; 452(7188): 773-6.
  34. Filler S.G. Insights from human studies into the host defense against candidiasis. Cytokine. 2012; 58(1): 129-32.
  35. Kisand K., Boe Wolff A.S., Podkrajsek K.T., Tserel L., Link M., Kisand K.V. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 2010; 207(2): 299-308.
  36. Puel A, Doffinger R., Natividad A., Chrabieh M., Barcenas-Morales G., Picard C. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 2010; 207(2): 291-7.
  37. Van de Veerdonk F.L., Plantinga T.S., Hoischen A., Smeekens S.P., Joosten L.A., Gilissen C. et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N. Engl. J. Med. 2011; 365(1): 54-61.
  38. Smeekens S.P., Plantinga T.S., van de Veerdonk F.L., Heinhuis B., Hoischen A., Joosten L.A. et al. STAT1 hyperphosphorylation and defective IL12R/ IL23R signaling underlie defective immunity in autosomal dominant chronic mucocutaneous candidiasis. PloS One. 2011; 6(12): e29248.
  39. Liu L., Okada S., KongX.F., Kreins A.Y., Cypowyj S., Abhyankar A. et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 2011; 208(8): 1635-48.
  40. Soltesz B., Toth B., Shabashova N., Bondarenko A., Okada S., Cypowyj S. et al. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe. J. Med. Genet. 2013; 50(9): 567-7841.
  41. Takezaki S., Yamada M., Kato M., Park M.J., Maruyama K., Yamazaki Y. et al. Chronic mucocutaneous candidiasis caused by a gain-of-function mutation in the STAT1 DNA-binding domain. J. Immunol. 2012; 189(3): 1521-6.
  42. Al Rushood M., McCusker C., Mazer B., Alizadehfar R., Grimbacher B., Depner M., Ben-Shoshan M. Autosomal dominant cases of chronic mucocutaneous candidiasis segregates with mutations of signal transducer and activator of transcription 1, but not of Toll-like receptor 3. J. Pediatr. 2013; 163(1): 277-9.
  43. Oliveira Carvalho V., Okay T.S., Melhem M. S., Walderez Szeszs M., del Negro G.M. The new mutation L321F in Candida albicans ERG11 gene may be associated with fluconazole resistance. Rev. Iberoam. Micol. 2013; 30(3): 209-12.
  44. Xiang M.J., Liu J.Y., Ni.H., Wang S., Shi C., Wei B. et al. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res. 2013; 13(4): 386-93.
  45. Heilmann C.J., Schneider S., Barker K.S., Rogers P.D., Morschhauser J. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans. Antimicrob. Agents Chemother. 2010; 54(1): 353-9.
  46. Hoot S.J., Smith A.R., Brown R.P., White T.C. An A643V amino acid substitution in Upc2p contributes to azole resistance in well-characterized clinical isolates of Candida albicans. Antimicrob. Agents Chemother. 2011: 55(2): 940-2.
  47. Dunkel N., Liu T.T., Barker K.S., Homayouni R., Morschhauser J., Rogers P. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot. Cell. 2008; 7(7): 1180-90.
  48. Dunkel N., Blass J., Rogers P.D., Morschhauser J. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol. Microbiol. 2008; 69(4): 827-40.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies