MicroRNA expression in cervical intraepithelial neoplasia and cancer of the cervix uteri


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review considers the role of microRNA in precancer and cancer of the cervix uteri (CCU). Today there are a lot of studies showing the increased or decreased expression of certain microRNAs in the body’s pathological processes, including in benign and malignant cell and tissue hyperplasias. Neoplastic transformation of normal tissues of the cervix uteri to cervical neoplasia of various grades and CCU is accompanied by a change in the expression profile of more than 50 microRNAs that control the processes of cell proliferation, apoptosis, invasion, migration, and local angiogenesis. Estimation of the expression level of individual microRNAs in the affected tissue can highly effectively differentiate the early stages of cervical neoplasia from normal tissue and cervical cancer from precancer states; quantification of microRNA in the cervical canal scrapes or blood can characterize disease severity, CCU progression to a metastasis stage, an aggressive disease course, and poor survival prognosis. The expression level of certain microRNAs may serve as a marker for the efficiency of disease therapy. That of microRNA allows evaluation of the efficacy of novel drugs in treating CCU; synthetic microRNA-based molecules open up new possibilities of targeted therapy for both precancers and cancers.

Full Text

Restricted Access

About the authors

Leonid Zakievich Faizullin

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: l_faizullin@oparina4.ru
MD, Molecular-genetic Laboratory Researcher

Vitaliy Nikolaevich Karnaukhov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

junior researcher of Molecular-genetic Laboratory

Guranda Merabovna Mzarelua

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: mzareluag@mail.ru
PhD student

Viktoriya Fedorovna Chernova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: cernovav@mail.ru
PhD student

References

  1. Centers for Disease Control and Prevention (CDC). Human papillomavirus-associated cancers - United States, 2004-2008. MMWR Morb. Mortal. Wkly Rep. 2012; 61: 258-61.
  2. Давыдов М.И., Аксель Е.М., ред. Статистика злокачественных новообразований в России и странах СНГ в 2012 г. М.: Издательская группа РОНЦ; 2014: 47. [Davydov M.I., Aksel E.M., eds. Statistics of malignant tumors in Russia and the CIS in 2012. Moscow: Publishing Group Cancer Research Center; 2014: 47. (in Russian)]
  3. Scheffner M., Werness B.A., Huibregtse J.M., Levine A.J., Howley P.M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990; 63(6): 1129-36.
  4. Roman A., Munger K. The papillomavirus E7 proteins. Virology. 2013; 445(1-2): 138-68.
  5. Stahlhut C., Slack FJ. MicroRNAs and the cancer phenotype: profiling, signatures and clinical implications. Genome Med. 2013; 5(12): 111.
  6. Mohr A.M., Mott J.L. Overview of microRNA biology. Semin. Liver Dis. 2015; 35(1): 3-11.
  7. Chua J.H., Armugam A., Jeyaseelan K. MicroRNAs: biogenesis, function and applications. Curr. Opin. Mol. Ther. 2009; 11(2): 189-99.
  8. Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 2008; 9(2): 102-14.
  9. Xu L., Qi X., Duan S., Xie Y., Ren X., Chen G.■ et al. MicroRNAs: potential biomarkers for disease diagnosis. Biomed. Mater. Eng. 2014; 24(6): 3917-25.
  10. Hayes J., Peruzzi P-P-, Lawler S. MicroRNAs in cancer: biomarkers. functions and therapy. Trends Mol. Med. 2014; 20(8): 460-9.
  11. Gomez-Gomez Y., Organista-Nava J., Gariglio P. Deregulation of the miRNAs expression in cervical cancer: human papillomavirus implications. Biomed. Res. Int. 2013; 2013: 407052.
  12. Sharma G., Dua P., Agarwal S.M. A comprehensive review of dysregulated miRNAs involved in cervical cancer. Curr. Genomics. 2014; 15(4): 310-23.
  13. Liu J., Zhu H., Yang X., Ge Y., Zhang C., Qin Q. et al. MicroRNA-21 is a novel promising target in cancer radiation therapy. Tumour Biol. 2014; 35(5): 3975-9.
  14. Chen J., Wang X. MicroRNA-21 in breast cancer: diagnostic and prognostic potential. Clin. Transl. Oncol. 2014; 16(3): 225-33.
  15. Wang Y., Gao X., Wei F, Zhang X., Yu J., Zhao H. et al. Diagnostic and prognostic value of circulating miR-21 for cancer: a systematic review and meta-analysis. Gene. 2014; 533(1): 389-97.
  16. Ribeiro J., Sousa H. MicroRNAs as biomarkers of cervical cancer development: a literature review on miR-125b and miR-34a. Mol. Biol. Rep. 2014; 41(3): 1525-31.
  17. Liang J., Li Y., Daniels G., Sfanos K., De Marzo A., Wei J. et al. LEF1 targeting EMT in prostate cancer invasion is regulated by miR-34a. Mol. Cancer Res. 2015; 13(4): 681-8.
  18. Granados Lopez A.J., Lopez J.A. Multistep model of cervical cancer: participation of miRNAs and coding genes. Int. J. Mol. Sci. 2014; 15(9): 15700-33.
  19. Galamb A., Benczik M., Zinner B., Vigh E., Baghy K., Jeney C. et al. Dysregulation of microRNA expression in human cervical preneoplastic and neoplastic lesions. Pathol. Oncol. Res. 2015; 21(3): 503-8.
  20. Liang S., Tian T., Liu X., Shi H., Tang C., Yang S. et al. Microarray analysis revealed markedly differential miRNA expression profiles in cervical intraepithelial neoplasias and invasive squamous cell carcinoma. Future Oncol. 2014; 10(13): 2023-32.
  21. Gocze K., Gombos K., Kovacs K., Juhasz K., Gocze P., Kiss I. MicroRNA expressions in HPV-induced cervical dysplasia and cancer. Anticancer Res. 2015; 35(1): 523-30.
  22. Wang X., Wang H.K., Li Y., Hafner M., Banerjee N.S., Tang S. et al. MicroRNAs are biomarkers of oncogenic human papillomavirus infections. Proc. Natl. Acad. Sci. USA. 2014; 111(11): 4262-7.
  23. Liao S., Deng D., Zhang W., Hu X., Wang W., Wang H. et al. Human papillomavirus 16/18 E5 promotes cervical cancer cell proliferation, migration and invasion in vitro and accelerates tumor growth in vivo. Oncol. Rep. 2013; 29(1): 95-102.
  24. Greco D., Kivi N., Qian K., Leivonen S.K., Auvinen P., Auvinen E. Human papillomavirus 16 E5 modulates the expression of host microRNAs. PLoS One. 2011; 6(7): e21646.
  25. Wang X., Meyers C., Guo M., Zheng Z.M. Upregulation of p18Ink4c expression by oncogenic HPV E6 via p53-miR-34a pathway. Int. J. Cancer. 2011; 129(6): 1362-72.
  26. Zheng Z.-M., Wang X. Regulation of cellular miRNA expression by human papillomaviruses. Biochim. Biophys. Acta. 2011; 1809(11-12): 668-77.
  27. Martinez I., Gardiner A.S., Board K.F., Monzon F.A., Edwards R.P., Khan S.A. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene. 2008; 27(18): 2575-82.
  28. Wang W.T., Zhao Y.N., Yan J.X., Weng M.Y., Wang Y., Chen Y.Q., Hong S.J. Differentially expressed microRNAs in the serum of cervical squamous cell carcinoma patients before and after surgery. J. Hematol. Oncol. 2014; 7(1): 6.
  29. Summerer I., Niyazi M., Unger K., Pitea A., Zangen V., Hess J. et al. Changes in circulating microRNAs after radiochemotherapy in head and neck cancer patients. Radiat. Oncol. 2013; 8: 296.
  30. Yu J., Wang Y., Dong R., Huang X., Ding S., Qiu H. Circulating microRNA-218 was reduced in cervical cancer and correlated with tumor invasion. J. Cancer Res. Clin. Oncol. 2012; 138(4): 671-4.
  31. Zhao S., Yao D., Chen J., Ding N. Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer. Genet. Test. Mol. Biomarkers. 2013; 17(8): 631-6.
  32. Chen J., Yao D., Li Y., Chen H., He C., Ding N. et al. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Int. J. Mol. Med. 2013; 32(3): 557-67.
  33. Shen S.N., Wang L.F., Jia Y.F., Hao Y.Q., Zhang L., Wang H. Upregulation of microRNA-224 is associated with aggressive progression and poor prognosis in human cervical cancer. Diagn. Pathol. 2013; 8: 69.
  34. Wang Q., Qin J., Chen A., Zhou J., Liu J., Cheng J. et al. Downregulation of microRNA-145 is associated with aggressive progression and poor prognosis in human cervical cancer. Tumour Biol. 2015; 36(5): 3703-8.
  35. Yuan W., Xiaoyun H., Haifeng Q., Jing L., Weixu H., Ruofan D. et al. MicroRNA-218 enhances the radiosensitivity of human cervical cancer via promoting radiation induced apoptosis. Int. J. Med. Sci. 2014; 11(7): 691-6.
  36. Li J., Ping Z., Ning H. MiR-218 impairs tumor growth and increases chemo-sensitivity to cisplatin in cervical cancer. Int. J. Mol. Sci. 2012; 13(12): 16053-64.
  37. Chen Y, Ke G., Han D., Liang S., Yang G., Wu X. MicroRNA-181a enhances the chemoresistance of human cervical squamous cell carcinoma to cisplatin by targeting PRKCD. Exp. Cell Res. 2014; 320(1): 12-20.
  38. Bader A. G. MiR-34 - a microRNA replacement therapy is headed to the clinic. Front. Genet. 2012; 3: 120.
  39. Trang P., Medina P.P., Wiggins J.F., Ruffino L., Kelnar K., Omotola M. et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010; 29(11): 1580-7.
  40. van Rooij E., Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 2014; 6(7): 851-64.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies