Impact of intravenous laser blood irradiation on the morphofunctional status of platelets in puerperas after abdominal delivery


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To evaluate the impact of intravenous laser blood irradiation (ILBI) as a technique to prevent IICs on the morphofunctional parameters of platelets in puerperas after cesarean section. Subjects and methods. A total of 126 postcesarean section puerperas who received antibiotic prophylaxis with intravenous amoxiclav 1.2 g 15 minutes before skin incision were examined. On day 1 postsurgery, Group 1 (a study group) (n = 65) had daily 15-minute ILBI using a Solaris apparatus (Russia) with a helium-neon laser irradiation at 0.63 nm for 5 days. Group 2 (a comparison group) (n = 61) had antibiotic prophylaxis only. On days 1 and 6, the 126 puerperas underwent peripheral blood tests: platelet counts, blood coagulation tests with thromboelastography and platelet aggregation, and real-time monitoring of the morphofunctional status of platelets by coherent phase microscopy (CPM) using a Bioni-CPM module of a hardware and software complex (Westtrade, Russia) for clinical and laboratory diagnosis with digital image processing. Results. The mean age of Groups 1 and 2 puerperas was 31.2±5.4 and 30.5±5.1 years, respectively (р ?? 0.05). According to their somatic and obstetric/gynecological status, all the puerperas belonged to an IIC risk group. The investigation established that ILBI had an integral modifying effect on the functional activity of circulating platelets. ILBI in the puerperas contributed to the increased counts of resting platelets and the decreased level of active platelets, leading to suppression of the total adhesive and aggregation ability of platelets. After ILBI, the mean values of platelet diameter, perimeter, and area were slightly higher than the control ones, which might be due to the fact that there were young platelet subpopulations having high morphometric values, but a normal functional status in the bed. ILBI lowered the blood coagulation potential, as witnessed by decreases in fibrinogen concentrations, thrombodynamic potential index, and intravascular coagulation, and a prolongation of the r+k index, which favored better microcirculation and tissue oxygenation. Conclusion. The investigation has shown that postoperative ILBI is efficient and safe in IIC risk group puerperas, by affecting platelet morphofunctional parameters and hemostatic system, which allows ILBI to be recommended as part of measures to prevent IICs after cesarean section.

Full Text

Restricted Access

About the authors

T. A Fedorova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: t_fyodorova@oparina4.ru
h.D., MD., Head of transfusion department

I. A Vasilenko

Maimonides State Classical Academy, Ministry of Education and Science of Russia; Russian Medical Academy of Postgraduate Education, Ministry of Health of Russia

Email: vasilenko0604@gmail.com
Ph.D., MD., Head of Department of Biology of Maimonides State Classical Academy; Head of medical cytology laboratory of Russian Medical Academy of Postgraduate Education

T. K Puchko

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: t_puchko@oparina4.ru
Ph.MD., the leading scientific researcher of delivery department

K. G Bykova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: k_bykova@oparina4.ru
obstetrician-gynecologist of postdelivery department

V. B Metelin

Maimonides State Classical Academy, Ministry of Education and Science of Russia; Russian Medical Academy of Postgraduate Education, Ministry of Health of Russia

Email: verrv@rambler.ru
Ph.D., associate professor of Department of Biology of Maimonides State Classical Academy; senior researcher of medical cytology laboratory of Russian Medical Academy of Postgraduate Education.

A. V Matveeva

Russian Medical Academy of Postgraduate Education, Ministry of Health of Russia

Email: svia@rambler.ru
research associate of medical cytology laboratory

References

  1. Свиридова О.Н. Осложнения после кесарева сечения. Бюллетень медицинских интернет-конференций. 2013; 3(3): 658
  2. Суханова Л.П. Статистика родовспоможения как фактор обеспечения качества акушерской и перинатальной помощи в России. Социальные аспекгыздоровьянаселения.2007;4.Availableat: http://vestnik.mednet.ru/ content/view/47/30/
  3. Häger R.M., Daltveit A.K., Hofoss D., Nilsen S.T., Kolaas T., 0ian P., Henriksen T. Complications of cesarean deliveries: rates and risk factors. Am. J. Obstet. Gynecol. 2004; 190(2): 428-34.
  4. Абрамченко В.В. Послеродовый эндометрит и субинволюция матки. СПб.: ЭЛБИ-СПб; 2008. 228с.
  5. Humphreys H., Winter В., Paul М. Infections in the adult intensive care unit. Springer; 2013: 25-42.
  6. Кулаков В.И., Гуртовой Б.Л., Анкирская А., Антонов А.Г. Актуальные проблемы антимикробной терапии и профилактики инфекций в акушерстве, гинекологии и неонатологии. Акушерство и гинекология. 2004; 1: 3-6.
  7. Clifford V., Daley А. Antibiotic prophylaxis in obstetric and gynaecological procedures: a review. Aust. N. Z. J. Obstet. Gynaecol. 2012; 52(5): 412-9.
  8. Smaill F.M., Gyte G.M. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst. Rev. 2010; (1): CD007482.
  9. Мусихин Л.В., Смольников П.В., Ширяев В.С., Шветский Ф.М., Бугровская О.И., Хосровян А.М., Гребенкина М.А. ВЛОК - современные возможности нефармакологического решения проблем интенсивной терапии и реанимации. Лазерная медицина. 2013; 17(3): 4-9.
  10. Saeki S. Low reactive laser therapy. Masui. 2012; 61(7): 678-8.
  11. Пешев Л.П., Евстигнеев А.Р. Квантовая терапия в акушерско-гинекологической клинике. Саранск, Калуга; 2002. 156с.
  12. Гейниц А.В., Москвин С.В., Ачилов А.А. Внутривенное лазерное облучение крови. Тверь: Триада; 2012. 336с.
  13. Смолина Г.Р., Москвин С.В. Применение низкоинтенсивного импульсного лазерного излучения красного спектра (0,63-0,67 мкм) при лечении больных хроническими эндометритами. В. кн.: Материалы научно-практической конференции с международным участием «Лазерная медицина XXI века». М.; 2009: 116.
  14. Мельникова С.Е., Орлов В.М. Использование низкоэнергетического лазерного излучения в комплексном лечении послеродового эндометрита. Вестник перинатологии, акушерства и гинекологии. 2000; 7: 421-4.
  15. Козель А.И., Попов Г.К. Механизм действия лазерного облучения на тканевом и клеточном уровня. Вестник Российской академии медицинских наук. 2000; 2: 41-3.
  16. Karu T.I. Photobiology of low-power laser therapy. London: Harward Acad. Publi.; 1992. 187p.
  17. Гладких С.П., Алексеев Ю.В., Полонский А.К. Молекулярно-биологические основы лазерной и фотодинамической терапии. В. кн.: Новые аспекты лазерной медицины и техники на пороге 21 века: Сборник научных трудов №5. М., Калуга; 2000: 1-55.
  18. Картусова Л.Н. Влияние излучения гелий-неонового лазера на физико-химические свойства крови: автореф. дисс.. канд. биол. наук. М.; 1996. 26с.
  19. Шитикова А.С. Тромбоцитарный гемостаз. СПб.: СПб ГМУ им. акад. И.П. Павлова; 2000. 227с.
  20. Балуда В.П., Маляровский В.Н., Ойвин И.А. Лабораторные методы исследования системы гемостаза. Томск; 1980. 333с.
  21. Василенко И.А., Кардашова З.З., Тычинский В.П., Вишенская Т.В., Лифенко Р.А., Валов А.Л., Иванюта И.В., Агаджанян Б.Я. Клеточная диагностика: возможности витальной компьютерной микроскопии. Вестник последипломного медицинского образования. 2009; 3-4: 64-8.
  22. Su G.D., Gong S.P., Yu Y.H. Intraoperative and postoperative risk factors for surgical site infection following cesarean section. Di Yi Jun Yi Da Xue Xue Bao. 2005; 25(8): 1005-6.
  23. Василенко И.А., Гаспарян С.А., Антонова И.Ш., Савушкин А.В., Бабакова С.В. Динамика показателей тромбоцитарного звена гемостаза при физиологическом течении беременности. Вопросы гинекологии, акушерства и перинатологии. 2006; 5(4): 5-12.
  24. Hsieh Y.L., Chou L.W., Chang P.L., Yang C.C., Kao M.J., Hong C.Z. Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: Possible involvements in hypoxia-inducible factor 1a (HIF-1a). J. Compar. Neurol. 2012; 520(13): 2903-16.
  25. Bjordal J.M., Johnson M.I., Iversen V., Aimbire F., Lopes-Martins R.A. Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed. Laser Surg. 2006; 24(2): 158-68.
  26. Yamaura M., Yao M., Yaroslavsky I., Cohen R., Smotrich M., Kochevar I.E. Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg. Med. 2009; 41(4): 282-90.
  27. Шиффман Ф.Дж. Патофизиология крови. Пер. с англ. М.: БИНОМ; СПб.: Невский Диалект; 2000: 149-91.
  28. Байбеков И.М., Мавлян-Ходжаев Р.Ш., Эрстекис А.Г., Москвин С.В. Эритроциты в норме, патологии и при лазерных воздействиях. Тверь: Триада; 2008. 256с.
  29. Pratesi R., Saechi C., eds. Lasers in photomedicine and photobiology. Soringer series in Optical Science. vol.22. Berlin, Heidelberg, New York: Springer-Verlag; 1996: 23-4.
  30. Liebert A.D., Bicknell B.T., Adams R.D. Protein conformational modulation by photons: a mechanism for laser treatment effects. Med. Hypotheses. 2014; 82(3): 275-81.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies