Proteomic composition of cervicovaginal fluid in cervical diseases associated with HPV infection


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To determine changes of the cervicovaginal fluid proteomic composition for assessment of the severity of HPV-associated cervical lesions among women of reproductive age. Subject and methods. The study involved 30 volunteers with various forms of HPV-associated cervical lesions (ASCUS, LSIL and HSIL). All samples of cervicovaginal fluid were prepared for further proteomic analysis by tandem mass spectrometry (HPLC-MS/MS). Semi-quantitative data analysis including identification and annotation of proteins was carried out using the software package MaxQuant and Perseus. Results. The protein panels specific to the various forms of HPV-associated cervical lesions (ASCUS, LSIL and HSIL) were identified. The first group of proteins (P4HB, HSPA8, C4BPA and others) characterized the early changes associated with HPV infection and cervical epithelium lesion, including viruspenetration into the cell and its transcription, impaired function of the complement system. The second group of proteins (PRDX5, YWHAE, LRG1 and others) were directly involved in the development and progression of cervical neoplasia and characterized late changes, in particular, reduced apoptosis, impaired differentiation and maturation of the epithelium, and the transformation of atypical cells. Conclusion. The analysis of the proteome of the CVH allows to study the molecular mechanisms of the pathogenesis of HPV-associated cervical diseases and to differentiate epithelial changes at early stages of development.

Full Text

Restricted Access

About the authors

Maka Djemalovna Zardiashvili

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: z-m-d@mail.ru
PhD student

Vladimir Evgenievich Frankevich

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_frankevich@oparina4.ru
PhD, Head of Department of Systems Biology in Reproduction

Niso Mirzoevna Nazarova

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: grab2@yandex.ru
MD, PhD, Senior Researcher

Anna Evgenievna Bugrova

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; N.M. Emanuel Institute for Biochemical Physics, Russian Academy of Sciences

Email: a_bugrova@oparina4.ru
PhD, Senior Researcher of Proteomics of Human Reproduction

Aleksey Sergeevich Kononikhin

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: konoleha@yandex.ru
PhD, Researcher of Proteomics of Human Reproduction

Alexander Gennadievich Brhozovsky

Institute of Biomedical Problems - Russian Federation State Scientific Research Center, Russian Academy of Sciences

Email: agb.imbp@gmail.com
PhD student of Laboratory of proteomics

Nataliia Leonidovna Starodubtseva

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; Moscow Institute of Physics and Technology

Email: n_starodubtseva@oparina4.ru
PhD, Head of Laboratory of Proteomics of Human Reproduction

Aleksandra Vyacheslavovna Asaturova

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: g_sukhikh@oparina4.ru
PhD, Senior Researcher of pathologoanatomic department

Gennadiy Tikhonovich Sukhikh

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Academician of RAS, MD, PhD, Professor, Director

References

  1. Zur Hausen H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J. Natl. Cancer Inst. 2000; 92(9): 690-8.
  2. http://www.who.int/mediacentre/factsheets/fs380/en
  3. Бурменская О.В., Назарова Н.М., Прилепская В.Н., Мзарелуа Г.М., Бестаева Н.В., Трофимов Д.Ю., Сухих Г.Т. Прогнозирование риска развития и прогрессирования цервикальных интраэпителиальных неоплазий, ассоциированных с папилломавирусной инфекцией. Акушерство и гинекология. 2016; 2: 92-8. http://dx.doi.org/10.18565/aig.2016.2.92-98 [Burmenskaya O.V., Nazarova N.M., Prilepskaya V.N., Mzarelua G.M., Bestaeva N.V., Trofimov D.Yu., Sukhikh G.T. Prediction of the risk and progression of cervical intraepithelial neoplasias associated with papillomavirus infection. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2016; (2): 92-98. (in Russian) http://dx.doi.org/10.18565/aig.2016.2.92-98]
  4. Van Raemdonck G.A., Tjalma W.A., Coen E.P., Depuydt C.E., Van Ostade X.W. Identification of protein biomarkers for cervical cancer using human cervicovaginal fluid. PLoS One. 2014; 9(9): e106488. doi: 10.1371/journal. pone.0106488. eCollection 2014.
  5. Yang H., Lau W.B., Lau B., Xuan Y., Zhou S., Zhao L. et al. A mass spectrometric insight into the origins of benign gynecological disorders. Mass Spectrom Rev. 2017; 36(3): 450-70. doi: 10.1002/mas.21484.
  6. Klein L.L., Jonscher K.R., Heerwagen M.H., Gibbs R.S., McManaman J.L. Shotgan proteomic analysis of vaginal fluid from woman in late pregnancy. Reprod. Sci. 2008; 15(3): 263-73.
  7. Venkataraman N., Cole A.L., Svoboda P., Pohl J., Cole A.M. Cationic polypeptides are required for anti-HIV-1 activity of human vaginal fluid. J. Immunol. 2005; 175(11): 7560-7.
  8. Good D.M., Thongboonkerd V., Novak J., Bascands J.L., Schanstra J.P., Coon J.J. et al. Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J. Proteome Res. 2007; 6(12): 4549-55.
  9. Nayar R., Wilbur D.C. eds. The Bethesda System for Reporting Cervical Cytology. Definitions, criteria, and explanatory notes. 3rd ed. New York: Springer; 2015.
  10. Bi S., Hong P.W., Lee B., Baum L.G. Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to enhance T-cell migration and HIV entry. Proc. Natl. Acad. Sci. USA. 2011; 108(26): 10650-5.
  11. Nakatsuji H., Nishimura N., Yamamura R., Kanayama H.O., Sasaki T. Involvement of actinin-4 in the recruitment of JRAB/MICAL-L2 to cell-cell junctions and the formation of functional tight junctions. Mol. Cell. Biol. 2008; 28(10): 3324-35. doi: 10.1128/MCB.00144-08.
  12. Barbolina M.V., Adley B.P., Kelly D.L., Fought A.J., Scholiens D.M. et al. Motility-related actinin alpha-4 is associated with advanced and metastatic ovarian carcinoma. Lab. Invest. 2008; 88(6): 602-14. doi: 10.1038/labinvest.2008.25.
  13. Pampalakis G., Prosnikli E., Agalioti T., Vlahou A., Zoumpourlis V., Sotiropoulou G. A tumor-protective role for human kallikrein-related peptidase 6 in breast cancer mediated by inhibition of epithelial-to-mesenchymal transition. Cancer Res. 2009; 69(9): 3779-87. doi: 10.1158/0008-5472.CAN-08-1976.
  14. Hayashido Y., Lucas A., Rougeot C., Godyna S., Argraves W.S., Rochefort H. Estradiol and fibulin-1 inhibit motility of human ovarian- and breast-cancer cells induced by fibronectin. Int. J. Cancer. 1998; 75(4): 654-8.
  15. Quarta S., Vidalino L., Turato C., Ruvoletto M., Calabrese F., Valente M. et al. SERPINB3 induces epithelial-mesenchymal transition. J. Pathol. 2010; 221(3): 343-56. doi: 10.1002/path.2708.
  16. Sun Y., Sheshadri N., Zong W.X. SERPINB3 and B4: From biochemistry to biology. Semin. Cell Dev. Biol. 2017; 62: 170-7. doi: 10.1016/j. semcdb.2016.09.005.
  17. Shin J., Kim G., Lee J.W., Lee J.E., Kim Y.S., Yu J.H. et al. Identification of ganglioside GM2 activator playing a role in cancer cell migration through proteomic analysis of breast cancer secretomes. Cancer Sci. 2016; 107(6): 828-35.
  18. Welss T., Sun J., Irving J.A., Blum R., Smith A.I., Whisstock J.C. et al. Hurpin is a selective inhibitor of lysosomal cathepsin L and protects keratinocytes from ultraviolet-induced apoptosis. Biochemistry. 2003; 42(24): 7381-9.
  19. Fang W.Y., Chen Y.W., Hsiao J.R., Liu C.S., Kuo Y.Z., Wang Y.C. et al. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production. Oncotarget. 2015; 6(29): 28401-24. doi: 10.18632/oncotarget.4951.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies