Direct mass spectrometry approach for the express identification of tumor tissue from breast cancer patients


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. The development of analytical approach based on direct mass spectrometry analysis for the rapid identification and differentiation between tumor and healthy breast tissue. Subjects and methods. The case-control study included 25patients with invasive breast cancer. Each sample of tumor and healthy tissue from each patient was divided into two parts. One part was used for pathomorphological examination. Another part was investigated by direct mass spectrometry analysis to obtain molecular profile. The mass spectrometric data were processed by the OPLS-DA multivariate analysis. Results. The normal and tumor breast tissues were differentiated by OPLS-DA analysis of the mass spectrometric data. Lipids of 4 different classes contributed in classification: diacylglycerol DG 34:1, monoacylglycerols MG 18:1, MG O-14:1, phosphatidylcholines LPC 16:0, PC 32:0, PC 32:1, PC 34:0, PC 34:1, PC 34:2, PC 36:3, PC 38:3, PC 38:4, sphingomyelin SM 32:1. Conclusions. Direct mass spectrometry tissue analysis allows differentiation between tumor and healthy breast tissues based on characteristic patterns of lipid ion signals in the mass spectrum. Besides their diagnostic value, these characteristic patterns can also be used for the mechanistic study of tumor pathogenesis.

Full Text

Restricted Access

About the authors

Alisa Olegovna Tokareva

Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russia; Moscow Institute of Physics and Technology

Email: alisa.tokareva@phystech.edu
student

Vitaliy Viktorovich Chagovets

Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russia

Email: vvchagovets@gmail.com
PhD, Senior Researcher of Proteomics of Human Reproduction

Wang Zhihao

Moscow Institute of Physics and Technology; East China University of Technology

Email: frankevich@rambler.ru

Valeriy Vitalievich Rodionov

Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russia

Email: V_Rodionov@oparina4.ru
MD, Head of the Department of Breast Pathology

Vlada Vladimirovna Kometova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: vladastasiatema@mail.ru
PhD, senior researcher

Maria Valerievna Rodionova

Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russia

Email: m_Rodionova@oparina4.ru
MD, oncologist of the Department of Breast Pathology

Alexey Sergeevich Kononikhin

Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russia; Moscow Institute of Physics and Technology

Email: konoleha@yandex.ru
PhD, Researcher of Proteomics of Human Reproduction

Nataliia Leonidovna Starodubtseva

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; Moscow Institute of Physics and Technology

Email: n_starodubtseva@oparina4.ru
PhD, Head of Laboratory of Proteomics of Human Reproduction

K. Chingin

East China University of Technology

Email: chingin.k@hotmail.com

Vladimir Evgenievich Frankevich

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_frankevich@oparina4.ru
PhD, Head of Department of Systems Biology in Reproduction

Chen Huanwen

East China University of Technology

Email: chingin.k@hotmail.com
professor

Gennadiy Tikhonovich Sukhikh

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Academician of RAS, MD, PhD, Professor, Director

References

  1. Miller K.D., Siegel R.L., Lin C.C., Mariotto A.B., Kramer J.L., Rowland J.H. et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 2016; 66(4): 271-89.
  2. Jeevan R., Cromwell D.A., Trivella M., Lawrence G., Kearins O., Pereira J. et al. Reoperation rates after breast conserving surgery for breast cancer among women in England: retrospective study of hospital episode statistics. BMJ. 2012; 345: e4505.
  3. Fisher B., Anderson S., Bryant J., Margolese R.G., Deutsch M., Fisher E.R. et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N. Engl. J. Med. 2002; 347(16): 1233-41.
  4. van Dongen J.A., Voogd A.C., Fentiman I.S., Legrand C., Sylvester R.J., Tong D. et al. Long-term results of a randomized trial comparing breast-conserving therapy with mastectomy: European Organization for Research and Treatment of Cancer 10801 trial. J. Natl. Cancer Inst. 2000; 92(14): 1143-50.
  5. Veronesi U., Cascinelli N., Mariani L., Greco M., Saccozzi R., Luini A. et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N. Engl. J. Med. 2002; 347(16): 1227-32.
  6. McCahill L.E., Single R.M., Aiello Bowles E.J., Feigelson H.S., James T.A. et al. Variability in reexcision following breast conservation surgery. JAMA. 2012; 307(5): 467-75.
  7. Waljee J.F., Hu E.S., Newman L.A., Alderman A.K. Predictors of re-excision among women undergoing breast-conserving surgery for cancer. Ann. Surg. Oncol. 2008; 15(5): 1297-303.
  8. Olson T.P., Harter J., Munoz A., Mahvi D.M., Breslin T. Frozen section analysis for intraoperative margin assessment during breast-conserving surgery results in low rates of re-excision and local recurrence. Ann. Surg. Oncol. 2007; 14(10): 2953-60.
  9. D’Halluin F., Tas P., Rouquette S., Bendavid C., Foucher F., Meshba H. et al. Intra-operative touch preparation cytology following lumpectomy for breast cancer: a series of 400 procedures. Breast. 2009; 18(4): 248-53.
  10. Mesurolle B., El-Khoury M., Hori D., Phancao J.P., Kary S., Kao E., Fleiszer D. Sonography of postexcision specimens of nonpalpable breast lesions: value, limitations, and description of a method. AJR Am. J. Roentgenol. 2006; 186(4): 1014-24.
  11. Ciccarelli G., Di Virgilio M.R., Menna S., Garretti L., Ala A., Giani R. et al. Radiography of the surgical specimen in early stage breast lesions: diagnostic reliability in the analysis of the resection margins. Radiol. Med. 2007; 112(3): 366-76.
  12. St John E. et al. Abstract P2-12-20: Rapid evaporative ionisation mass spectrometry towards real time intraoperative oncological margin status determination in breast conserving surgery. Cancer Res. 2016; 76(4, Suppl.): P2-12-20-P2-12-20.
  13. Balog J., Szaniszlo T., Schaefer K.C., Denes J., Lopata A., Godorhazy L. et al. Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal. Chem. 2010; 82(17): 7343-50.
  14. Balog J., Sasi-Szabo L., Kinross J., Lewis M.R., Muirhead L.J., Veselkov K. et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med. 2013; 5(194): 194ra93.
  15. Takats Z., Wiseman J.M., Gologan B., Cooks R.G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004; 306(5695): 471-3.
  16. Dill A.L., Ifa D.R., Manicke N.E., Ouyang Z., Cooks R.G. Mass spectrometric imaging of lipids using desorption electrospray ionization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009; 877(26): 2883-9.
  17. Eberlin L.S., Norton I., Orringer D., Dunn I.F., Liu X., Ide J.L. et al. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc. Natl. Acad. Sci. USA. 2013; 110(5): 1611-6.
  18. Hinsch A., Buchholz M., Odinga S., Borkowski C., Koop C., Izbicki J.R. et al., MALDI imaging mass spectrometry reveals multiple clinically relevant masses in colorectal cancer using large-scale tissue microarrays. J. Mass Spectrom. 2017; 52(3): 165-73.
  19. Caprioli R.M., Farmer T.B., Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 1997; 69(23): 4751-60.
  20. Chughtai K., R.M. Heeren R.M. Mass spectrometric imaging for biomedical tissue analysis. Chem. Rev. 2010; 110(5): 3237-77.
  21. Wucher A., Cheng J., Winograd N. Protocols for three-dimensional molecular imaging using mass spectrometry. Anal. Chem. 2007; 79(15): 5529-39.
  22. Boxer S.G., Kraft M.L., Weber P.K. Advances in imaging secondary ion mass spectrometry for biological samples. Annu. Rev. Biophys. 2009; 38: 53-74.
  23. Bluestein B.M., Morrish F., Graham D.J., Guenthoer J., Hockenbery D., Porter P.L., Gamble L.J. An unsupervised MVA method to compare specific regions in human breast tumor tissue samples using ToF-SIMS. Analyst. 2016; 141(6): 1947-57.
  24. Kononikhin A., Zhvansky E., Shurkhay V., Popov I., Bormotov D., Kostyukevich Y. et al. A novel direct spray-from-tissue ionization method for mass spectrometric analysis of human brain tumors. Anal Bioanal. Chem. 2015; 407(25): 7797-805.
  25. Борисова А.В., Стародубцева Н.Л., Козаченко А.В., Чаговец В.В., Салимова Д.Ф., Кононихин А.С., Коган Е.А., Адамян Л.В., Франкевич В.Е., Сухих Г.Т. Исследование очагов эндометриоза различной локализации методом прямой масс-спектрометрии. Акушерство и гинекология. 2016; 9: 101-8. http://dx.doi.org/10.18565/aig.2016.9.101-8 [Borisova A.V., Starodubtseva N.L., Kozachenko A.V., Chagovets V.V., Salimova D.F., Kanonikhin A.S., Kogan E.A., Adamyan L.V., Frankevich V.E., Sukhikh G.T. Direct mass spectrometry investigation of endometriotic foci at various sites. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2016; (9): 101-8. (in Russian) http://dx.doi.org/10.18565/aig.2016.9.101-8]
  26. Wei Y., Chen L., Zhou W., Chingin K., Ouyang Y., Zhu T. et al. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma. Sci. Rep. 2015; 5: 10077.
  27. Eriksson L., Johansson E., Kettaneh-Wold N., Wold S. Introduction to multiand megavariate data analysis using projection methods (PCA & PLS). Umeå, Sweden: Umetrics AB; 1999.
  28. Wold S., Sjöström M., Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems. 2001; 58(2): 109-30.
  29. Ramírez de Molina A., Báñez-Coronel M., Gutiérrez R., Rodríguez-González A., Olmeda D., Megías D., Lacal J.C. Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression. Cancer Res. 2004; 64(18): 6732-9.
  30. Podo F., Sardanelli F., Iorio E., Canese R., Carpinelli G., Fausto A. Abnormal choline phospholipid metabolism in breast and ovary cancer: Molecular bases noninvasive imaging approaches. Curr. Med. Imaging Rev. 2007; 3(2): 123-37.
  31. Podo F. Tumour phospholipid metabolism. NMR Biomed. 1999; 12(7): 413-39.
  32. de Certaines J.D., Larsen V.A., Podo F., Carpinelli G., Briot O., Henriksen O. In vivo 31P MRS of experimental tumours. NMR Biomed. 1993; 6(6): 345-65.
  33. Negendank W. Studies of human tumors by MRS: A review. NMR Biomed. 1992; 5(5): 303-24.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies