Fetal programming


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To analyze the data of current scientific literature on the concept and mechanisms of fetal programming and on the role of some factors in the development of diseases. Material and methods. The paper includes the data of Russian and foreign articles published in the past 10 years. Results. The paper describes the basic presently known factors and mechanisms of fetal programming, as well as procedures for their optimization from the point of view of improving the overall health of offspring. Conclusion. Fetal programming factors play a leading role in the development of chronic diseases in the offspring. The reasonable impact on them is a method to prevent diseases in adults and children.

Full Text

Restricted Access

About the authors

Eliso Murmanovna Dzhobava

MDM Clinic

Email: lis9@rambler.ru
the doctor of medical sciences, the doctor the obstetrics-gynecologist

References

  1. de Souza A.S., Fernandes F.S., do Carmo Md. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr. Rev. 2011; 69(3): 132-44.
  2. Roseboom T.J., Painter R.C., van Abeelen A.F., Veenendaal M.V., de Rooij S.R. Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas. 2011; 70(2): 141-5.
  3. de Groot R.H., Stein A.D., Jolies J., van Boxtel M.P., Blauw G.J., van de Bor M., Lumey L. Prenatal famine exposure and cognition at age 59 years. Int. J. Epidemiol. 2011; 40(2): 327-37.
  4. de Rooij S.R., Wouters H., Yonker J.E., Painter R.C., Roseboom T.J. Prenatal undernutrition and cognitive function in late adulthood. Proc. Natl. Acad. Sci. USA. 2010; 107(39): 16881-6.
  5. Godfrey K.M., Barker D.J.P. Fetal programming and adult health. Public Health Nutr. 2001; 4(2B): 611-24. doi: 10.1079/phn2001145.
  6. Vaiserman A.M. Early-life nutritional programming of longevity. J. Dev. Orig. Health Dis. 2014; 5(5): 325-38.
  7. Giussani D.A., Phillips P.S., Anstee S., Barker D.J.P. Effects of Altitude versus Economic Status on Birth Weight and Body Shape at Birth. Pediatr. Res. 2010; 49(4): 490-4. doi: 10.1203/00006450-200104000-00009.
  8. Kensara O.A., Wootton S.A., Phillips D.I., Patel M., Jackson A.A., Elia M.; Hertfordshire Study Group. Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am. J. Clin. Nutr. 2005; 82(5): 980-7.
  9. Spencer S.J. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress. Front. Neurosci. 2013; 7: 109.
  10. Khan S.I., Aumsuwan P., Khan I.A., Walker L.A., Dasmahapatra A.K. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem. Res. Toxicol. 2012; 25: 61-73.
  11. Jansson N., Pettersson J., Haafiz A., Ericsson A., Palmberg I., Tranberg M. et al. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J. Physiol. 2016; 576(Pt 3): 935-46. doi: 10.1113/jphysiol.2006.116509.
  12. Boney C.M., Verma A., Tucker R., Vohr B.R. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2015; 115(3): e290-6.
  13. Nelson S.M., Matthews P., Poston L. Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Hum. Reprod. Update. 2009; 16(3): 25575. doi: 10.1093/humupd/dmp050.
  14. Hedderson M.M., Williams M.A., Holt V.L., Weiss N.S., Ferrara A. Body mass index and weight gain prior to pregnancy and risk of gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2008; 198(4): 409. e1-7.
  15. Lucassen P.J., Meerlo P., Naylor A.S., van Dam A.M., Dayer A.G., Fuchs E. et al. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action. Eur. Neuropsychopharmacol. 2010; 20(1): 1-17.
  16. Essex M.J., Klein M.H., Cho E., Kalin N.H. Maternal stress beginning in infancy may sensitize children to later stress exposure: effects on cortisol and behavior. Biol. Psychiatry. 2012; 52(8): 776-84.
  17. Pace T.W., Mletzko T.C., Alagbe O., Musselman D.L., Nemeroff C.B., Miller A.H., Heim C.M. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am. J. Psychiatry. 2008; 163(9): 1630-3.
  18. Lakshmy R. Metabolic syndrome: role of maternal undernutrition and fetal programming. Rev. Endocr. Metab. Disord. 2013; 14(3): 229-40.
  19. Гарданова Ж.Р., Салехов С.А., Есаулов В.И., Хритинин Д.Ф., Абдуллин И.И., Абдурахманов С.Д., Галлямова Г.А., Анисимова К.А. Особенности влияния психоэмоционального стресса во время беременности на формирование пищевого поведения у ребенка. Исследования и практика в медицине. 2016; 3(1): 24-9.
  20. Филиппова Г.Г. Пренатальный стресс: усиление риска при современных технологиях ведения беременности и лечения бесплодия. В. кн.: Карабанова О.А., Захарова Е.И., Чурбанова С.М., Васягин Н.Н., ред. Психологические проблемы современной семьи. Сборник тезисов. Москва - Звенигород, 30 сентября - 4 октября 2015 г. М.; 2015.
  21. Nagarajan R., Hogart A., Gwye Y., Martin M.R., LaSalle J.M. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics. 2014; 1(4): 172-82. doi: 10.4161/ epi.1.4.3514.
  22. Thornburg K.L., Shannon J., Thuillier P., Turker M.S. In utero life and epigenetic predisposition for disease. Adv. Genet. 2010; 71: 57-78.
  23. Dror D.K., King J.C., Fung E.B., Van Loan M.D., Gertz E.R., Allen L.H. Evidence of associations between feto-maternal vitamin D. status, cord parathyroid hormone and bone-specific alkaline phosphatase, and newborn whole body bone mineral content. Nutrients. 2012; 4(2): 68-77. doi: 10.3390/nu4020068.
  24. Rosario J., Gomez M., Anbu P. Does the maternal micronutrient deficiency (copper or zinc or vitamin e) modulate the expression of placental 11 ß hydroxysteroid dehydrogenase-2 per se predispose offspring to insulin resistance and hypertension in later life. Indian J. Physiol. Pharmacol. 2008; 52(4): 355-65.
  25. Fall C.H., Fisher D.J., Osmond C., Margetts B.M.; Group MMSS. Multiple micronutrient supplementation during pregnancy in low-income countries: a meta-analysis of effects on birth size and length of gestation. Food Nutr. Bull. 2009; 30(4, Suppl.): S533.
  26. Crider K.S., Yang T.P., Berry R.J., Bailey L.B. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv. Nutr. 2012; 3(1): 21-38. doi: 10.3945/an.111.000992.
  27. Дзгоева Ф.Х. Питание во внутриутробный период жизни: фетальное программирование метаболического синдрома. Ожирение и метаболизм. 2015; 12(3): 10-7.
  28. Barbosa N.O.E., Okay T.S., Leone C.R. Magnesium and intrauterine growth restriction. J. Am. Coll. Nutr. 2009; 24(1): 10-5.
  29. Costantine M.M., Weiner S.J.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Effects of antenatal exposure to magnesium sulfate on neuroprotection and mortality in preterm infants: a meta-analysis. Obstet. Gynecol. 2009; 114(2, Pt 1): 354-64. doi: 10.1097/AOG.0b013e3181ae98c2.
  30. Takaya J., Yamato F., Higashino H., Kaneko K. Intracellular magnesium and adipokines in umbilical cord plasma and infant birth size, Pediatr. Res. 2012; 62(6): 700-3.
  31. Huerta M.G., Roemmich J.N., Kington M.L., Bovbjerg V.E., Weltman A.L., Holmes V.F. et al. Magnesium deficiency is associated with insulin resistance in obese children. Diabetes Care. 2010; 28(5): 1175-81.
  32. Kim D.J., Xun P., Liu K., Loria C., Yokota K., Jacobs D.R. Jr., He K. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care. 2010; 33(12): 2604-10. doi: 10.2337/ dc10-0994.
  33. Takaya J., Yamato F., Kaneko K. Possible relationship between low birth weight and magnesium status: from the standpoint of «fetal origin» hypothesis. Magnes. Res. 2016; 19(1): 63-9.
  34. Буданов П.В., Чурганова А.А., Мусаев З.М., Флорова В.С., Храмова Л.С., Пицхелаури Е.Г. Профилактика неблагоприятных перинатальных исходов плацентарной недостаточности и задержки роста плода. Медицинский совет. 2016; 12: 34-9.
  35. Джобава Э.М., Арбатская Н.Ю., Некрасова К.Р. Гестационный сахарный диабет и магний. Перспективы профилактики и комплексной терапии. Российский вестник акушера-гинеколога. 2014; 14(6): 32-6.
  36. Акарачкова Е.С., Шавловская О.А., Вершинина С.В., Котова О.В., Рябоконь И.В. Роль дефицита магния в формировании клинических проявлений стресса у женщин. Проблемы женского здоровья. 2013; 8(3): 52-9.
  37. Young G.L., Jewell D. Interventions for leg cramps in pregnancy. Cochrane Database Syst. Rev. 2012; (1): CD000121.
  38. Громова О.А., Серов В.Н., Торшин И.Ю. Магний в акушерстве и гинекологии: история применения и современные взгляды. Трудный пациент. 2008; 8(6): 20-8.
  39. Дикке Г.Б. Роль магния при физиологической беременности: контраверсии и доказательства. Медицинский совет. 2016; 19: 100-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Bionika Media