Monosomy 21 in abortus materials: description of a clinical case and analysis of the literature


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Chromosomal abnormalities are a leading cause of non-developing pregnancy. Numerous cytogenetic studies have shown that trisomies and polyploidies are a predominant type of genetic disorders in abortuses. According to many studies, chromosomal losses are mainly related to the X chromosome. Autosomal monosomies in the abortuses are considered to be a unique event; their qualitative spectrum and rate have not been previously studied systematically. Case report. The investigators carried out a cytogenetic analysis of the villus cells of the chorion obtained during artificial termination of non-developing pregnancy in a 39-year-old woman. All the analyzed chorionic cells in the abortus had a monosomy 21 karyotype. That this abnormality in embryos can be detected during non-developing pregnancy is confirmed by the previously described cases. Conclusion. Monosomy 21 in at least some cases is compatible with embryonic development up to 8 weeks or more of pregnancy. However, also fully monosomy and its mosaic variants generally lead to intrauterine embryonic death in the first trimester of pregnancy. The rate of abnormalities in the abortuses does not usually exceed 0.8% of the total number of samples with chromosomal abnormalities.

Full Text

Restricted Access

About the authors

Aleksey N. Volkov

Kemerovo State Medical University

Email: volkov_alex@rambler.ru
candidate of biological sciences, the senior research assistant, Central research laboratory

Tatyana A. Babarykina

Kemerovo regional clinical hospital

laboratory technician, medical-genetic consultation department

Oksana I. Rytenkova

Kemerovo regional clinical hospital

doctor - laboratory geneticist, medical-genetic consultation department

Aleksey V. Larionov

Kemerovo State University

candidate of biological sciences, assistant, department of genetics

References

  1. Чиряева О.Г., Петрова Л.И., Садик Н.А., Дудкина В.С., Пендина А.А., Федорова И.Д., Кузнецова Т.В., Баранов В.С. Цитогенетический анализ хориона при неразвивающейся беременности. Журнал акушерства и женских болезней. 2007; 56(1): 35-45.
  2. Philipp T., Philipp K., Reiner A., Beer F., Kalousek D.K. Embryoscopic and cytogenetic analysis of 233 missed abortions: factors involved in the pathogenesis of developmental defects of early failed pregnancies. Hum. Reprod. 2003; 18(8): 1724-32.
  3. Баранов В.С., Кузнецова Т.В. Цитогенетика эмбрионального развития человека. СПб.: Издательство Н-Л; 2007.
  4. Shaffer L.J., McGowan-Jordan J., Schmid M. ISCN 2013: an international system for human cytogenetic nomenclature. Basel: Karger; 2013. 140p.
  5. Lebedev I. Mosaic aneuploidy in early fetal losses. Cytogenet. Genome Res. 2011; 133(2-4): 169-83.
  6. Nguyen H.P., Riess A., Krüger M., Bauer P., Singer S., Schneider M. et al. Mosaic trisomy 21/monosomy 21 in a living female infant. Cytogenet. Genome Res. 2009; 125(1): 26-32.
  7. Toral-Lopez J., Gonzalez-Huerta L.M., Cuevas-Covarrubias S.A. Complete monosomy mosaic of chromosome 21: case report and review of literature. Gene. 2012; 510(2): 175-9.
  8. Burgess T., Downie L., Pertile M.D., Francis D., Glass M., Nouri S., Pszczola R. Monosomy 21 seen in live born is unlikely to represent true monosomy 21: a case report and review of the literature. Case Rep. Genet. 2014; 2014: 965401.
  9. Sahoo T., Dzidic N., Strecker M.N., Commander S., Travis M.K., Doherty C. et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges. Genet. Med. 2017; 19(1): 83-9.
  10. Shearer B.M., Thorland E.C., Carlson A.W., Jalal S.M., Ketterling R.P. Reflex fluorescent in situ hybridization testing for unsuccessful product of conception cultures: a retrospective analysis of 5555 samples attempted by conventional cytogenetics and fluorescent in situ hybridization. Genet. Med. 2011; 13(6): 545-52.
  11. Jia C.W., Wang L., Lan Y.L., Song R., Zhou L.Y., Yu L. et al. Aneuploidy in early miscarriage and its related factors. Chin. Med. J. 2015; 128(20): 2772-6.
  12. Jenderny J. Chromosome aberrations in a large series of spontaneous miscarriages in the German population and review of the literature. Mol. Cytogenet. 2014; 7:38.
  13. Grande M., Borrel A., Garcia-Posada R., Borobio V., Munoz M., Creus M. et al. The effect of maternal age on chromosomal anomaly rate and spectrum in recurrent miscarriage. Hum. Reprod. 2012; 27(10): 3109-17.
  14. Doria S., Carvalho F., Ramalho C., Lima V., Francisco T., Machado A.P. et al. An efficient protocol for the detection of chromosomal abnormalities in spontaneous miscarriages or foetal deaths. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009; 147(2): 144-50.
  15. An N., Li L.L., Zhang X.Y., Sun W.T., Liu M.H., Liu R.Z. Result and pedigree analysis of spontaneously abortion villus chromosome detecting by FISH. Genet. Mol. Res. 2015; 14(4): 16662-6.
  16. Gao J., Liu C., Yao F., Hao N., Zhou J., Zhou Q. et al. Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion. Mol. Cytogenet. 2012; 5(1): 33.
  17. Joosten A.M., De Vos S., Van Opstal D., Brandenburg H., Gaillard J.L., Vermeij-Keers C. Full monosomy 21, prenatally diagnosed by fluorescent in situ hybridization. Prenat. Diagn. 1997; 17(3): 271-5.
  18. Mori M.A., Lapunzina P., Delicado A., Nünez G., Rodriguez J.I., de Torres M.L. et al. A prenatally diagnosed patient with full monosomy 21: ultrasound, cytogenetic, clinical, molecular, and necropsy findings. Am. J. Med. Genet. A. 2004; 127A(1): 69-73.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies