Role of placental mitochondria in the etiology and pathogenesis of complicated pregnancy


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper analyzes the works of Russian and foreign scientists on placental mitochondrial dysfunction as one of the possible causes of the occurrence and development of pregnancy complications. There is a lot of evidence suggesting that the pathogenesis of preeclampsia, intrauterine growth restriction, preterm birth, and miscarriages is closely related to oxidative stress, proteomic spectrum changes, lipid metabolic disorders, impaired miRNA expression, quality-control system dysregulation, and lower respiratory chain enzyme activity, which occur in placental mitochondria. Although the pathophysiology underlying gestational complications is different, the changes in mitochondrial structure and functions are seen in all cases of a common final stage of cell death and can be a target for pharmacotherapy.

Full Text

Restricted Access

About the authors

Valentina N. Perfilova

Volgograd State Medical University

Email: vnperfilova@mail.ru
Dr.Sc (Biology), professor, Department of Pharmacology and Biopharmacy

References

  1. Andraweera P.H., Bobek G., Bowen C., Burton G.J., Correa Frigerio P., Chaparro A. et al. IFPA meeting 2015 workshop report II: mechanistic role of the placenta in fetal programming; biomarkers of placental function and complications of pregnancy. Placenta. 2016; 48(1): 7-11. https://dx.doi. org/10.1016/j.placenta.2015.12.012.
  2. Zhang S., Regnault T.R., Barker P.L., Botting K.J., McMillen I.C., McMillan C.M. et al. Placental adaptations in growth restriction. Nutrients. 2015; 7(1): 360-89. https://dx.doi.org/10.3390/nu7010360.
  3. Андреев А.Ю., Кушнарева Ю.Е., Мерфи Э.Н., Старков А.А. Митохондриальный метаболизм активных форм кислорода: десять лет спустя (обзор). Биохимия. 2015; 80(5): 612-30. Savitskaya MA, Onishchenko G.E. Mechanisms of apoptosis (review). Biochemistry. 2015; 80 (11): 1613-27. (in Russian)].
  4. Савицкая М.А., Онищенко Г.Е. Механизмы апоптоза (обзор). Биохимия. 2015; 80(11): 1613-27.
  5. Bustamante J., Ramirez-Velez R., Czerniczyniec A., Cicerchia D., Aguilar de Plata A.C., Lores-Arnaiz S. Oxygen metabolism in human placenta mitochondria. J. Bioenerg. Biomembr. 2014; 46(6): 459-69. https://dx.doi. org/10.1007/s10863-014-9572-x.
  6. Shi Z, Long W., Zhao C., Guo X., Shen R., Ding H. Comparative proteomics analysis suggests that placental mitochondria are involved in the development of pre-eclampsia. PLoS One. 2013; 8(5): e64351. https://dx.doi.org/10.1371/ journal.pone.0064351.
  7. Ishii T., Miyazawa M., Onodera A., Yasuda K., Kawabe N., Kirinashizawa M. et al. Mitochondrial reactive oxygen species generation by the SDHC V69E mutation causes low birth weight and neonatal growth retardation. Mitochondri on. 2011; 11(1): 155-65. https://dx.doi.org/10.1016/j.mito.2010.09.006.
  8. Pereira R.D., De Long N.E., Wang R.C., Yazdi F.T., Holloway A.C., Raha S. Angiogenesis in the placenta: the role of reactive oxygen species signaling. Biomed. Res. Int. 2015; 2015: 814543. https://dx.doi.org/10.1155/2015/ 814543.
  9. Covarrubias A.E., Lecarpentier E., Lo A., Salahuddin S., Gray K.J., Karumanchi S.A. et al. AP39, a modulator of mitochondrial bioenergetics, reduces anti-angiogenic response and oxidative stress in hypo xia-exposed trophoblasts: relevance for preeclampsia pathogenesis. Am. J. Pathol. 2019; 189(1): 104-14. https://dx.doi.org/ 10.1016/j.ajpath.2018.09.007.
  10. Jauniaux E., Burton G.J. The role of oxidative stress in placental-related diseases of pregnancy. J. Gynecol. Obstet. Biol. Reprod. (Paris). 2016; 45(8): 775-85. https://dx.doi.org/10.1016/j.jgyn.2016.02.012.
  11. Zsengeller ZK., Rajakumar A., Hunter J.T., Salahuddin S., Rana S., Stillman I.E. et al. Trophoblast mitochondrial function is impaired in preeclampsia and correlates negatively with the expression of soluble fms-like tyrosine kinase 1. Pregnancy Hypertens. 2016; 6(4): 313-9. https://dx.doi.org/10.1016/j. preghy.2016.06.004
  12. Salgado S.S., Salgado M.K.R. Structural changes in pre-eclamptic and eclamptic placentas an ultrastructural study. J. Coll. Physicians Surg. Pak. 2011; 21(8): 482-6. https://dx.doi.org/08.2011/JCPSP.482486.
  13. Yan J.Y., Xu X. Relationships between concentrations of free fatty acid in serum and oxidative-damage levels in placental mitochondria and preeclampsia. Zhonghua Fu Chan Ke Za Zhi. 2012; 47(6): 412-7.
  14. Taysi S., Tascan A.S., Ugur M.G., Demir M. Radicals, oxidative/nitrosative stress and preeclampsia. Mini Rev. Med. Chem. 2019; 19(3): 178-93. https:// dx.doi.org/ 102174/1389557518666181015151350.
  15. Padmini E., Lavanya S., Uthra V. Preeclamptic placental stress and over expression of mitochondrial HSP70. Clin. Chem. Lab. Med. 2009; 47(9): 107380. https://dx.doi.org/10.1515/CCLM.2009.247.
  16. Vishnyakova P.A., Volodina M.A., Tarasova N.V., Marey M.V., Tsvirkun D.V., Vavina O.V. et al. Mitochondrial role in adaptive response to stress conditions in preeclampsia. Sci. Rep. 2016; 6: 32410. https://dx.doi.org/10.1038/srep32410.
  17. Xu Z., Jin X., Cai W., Zhou M., Shao P., Yang Z. et al. Proteomics analysis reveals abnormal electron transport and excessive oxidative stress cause mitochondrial dysfunction in placental tissues of early-onset preeclampsia. Proteomics Clin. Appl. 2018; 12(5): e1700165. https://dx.doi.org/10.1002/prca.201700165.
  18. Zhou X., Han T.L., Chen H., BakerP.N., QiH., ZhangH. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia. Exp. Cell Res. 2017; 359(1): 195-204. https://dx.doi. org/10.1016/j.yexcr.2017.07.029.
  19. Li F, Yang Z., Zhang A., Sun X., Wang J., Meng R. The changes of LCHAD in preeclampsia with different clinical features and the correlation with NADPH P47-phox, p38MAPK-a, COX-2 and serum FFA and TG. Zhonghua Fu Chan Ke Za Zhi. 2015; 50(2): 92-100.
  20. Meng R., Yang Z., Wang H.L., Han Y.W., Wang Y.L., Yu H. Variation of long-chain 3-hydroxyacyl CoA dehydrogenase DNA methylated modification and correlation with gene mRNA expression of early-onset preeclampsia, HELLP syndrome and antiphospholipid syndrome in trophoblast cells of placenta. Zhonghua Fu Chan Ke Za Zhi. 2016; 51(4): 270-8. https://dx.doi.org/10.3760/ cma.j.issn.0529-567X.2016.04.006.
  21. Bo R., Hasegawa Y., Yamada K., Kobayashi H., Taketani T., Fukuda S. et al. A fetus with mitochondrial trifunctional protein deficiency: Elevation of 3-OH-acylcarnitines in amniotic fluid functionally assured the genetic diagnosis. Mol. Genet. Metab. Rep. 2015; 6: 1-4. https://dx.doi.org/10.1016/]. ymgmr.2015.11.005.
  22. Liang K., Li N., Wang X., Dai J., Liu P., Wang C. et al. Cryo-EM structure of human mitochondrial trifunctional protein. Proc. Natl. Acad. Sci. USA. 2018; 115(27): 7039-44. https://dx.doi.org/10.1073/pnas.1801252115.
  23. Bounds K.R., Chiasson V.L., Pan L.J., Gupta S., Chatterjee P. MicroRNAs: new players in the pathobiology of preeclampsia. Front. Cardiovasc. Med. 2017; 4: 60. https://dx.doi.org/10.3389/fcvm.2017.00060.
  24. Myatt L., Muralimanoharan S., Maloyan A. Effect of preeclampsia on placental function: influence of sexual dimorphism, microRNA’s and mitochondria. Adv. Exp. Med. Biol. 2014; 814: 133-46. https://dx.doi.org/10.1007/978-1-4939-1031-1_12.
  25. Luo R., Shao X., Xu P., Liu Y., Wang Y., Zhao Y. et al. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1. Hypertension. 2014; 64(4): 839-45. https://dx.doi.org/10.1161/ HYPERTENSIONAHA.114.03530.
  26. Bai Y., Yang W., Yang H.X., Liao Q., Ye G., Fu G. et al. Downregulated miR-195 detected in preeclamptic placenta affects trophoblast cell invasion via modulating ActRIIA expression. PLoS One. 2012; 7(6): e38875. https://dx.doi. org/10.1371/journal.pone.0038875.
  27. Ding G.C., Chen M., Wang Y.X., Rui C., Xu W., Ding H.J. et al. MicroRNA-128a-induced apoptosis in HTR-8/SVneo trophoblast cells contributes to pre-eclampsia. Biomed. Pharmacother. 2016; 81: 63-70. https://dx.doi. org/10.1016/j.biopha.2016.03.040.
  28. Thomas R.L., Gustafsson A.B. Mitochondrial autophagy - an essential quality control mechanism for myocardial homeostasis. Circ. J. 2013; 77(10): 2449-54.
  29. Biala A.K., Dhingra R., Kirshenbaum L.A. Mitochondrial dynamics: Orchestrating the journey to advanced age. J. Mol. Cell. Cardiol. 2015; 83: 37-43. https:// dx.doi.org/10.1016/j.yjmcc.2015.04.015.
  30. Suliman H.B., Piantadosi C.A. Mitochondrial quality control as a therapeutic target. Pharmacol. Rev. 2016; 68(1): 20-48. https://dx.doi.org/10.1124/ pr.115.011502.
  31. Picca A., Lezza A.M.S., Leeuwenburgh C., Pesce V., Calvani R, Landi F. et al. Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. Int. J. Mol. Sci. 2017; 18(5): pii: E933. https://dx.doi. org/10.3390/ijms18050933.
  32. Mears J.A., Lackner L.L., Fang S., Ingerman E., Nunnari J., Hinshaw J.E. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 2011; 18(1): 20-6. https://dx.doi. org/10.1038/nsmb.1949.
  33. Ausman J., Abbade J., Ermini L., Farrell A., Tagliaferro A., Post M. et al. Ceramide-induced BOK promotes mitochondrial fission in preeclampsia. Cell Death Dis. 2018; 9(3): 298. https://dx.doi.org/10.1038/ s41419-018-0360-0.
  34. Yu J., Guo X., Chen R., Feng L. Downregulation of mitofusin 2 in placenta is related to preeclampsia. Biomed. Res. Int. 2016; 2016: 6323086. https://dx.doi. org/10.1155/2016/6323086.
  35. Lattuada D., Colleoni F., Martinelli A., Garretto A., Magni R., Radaelli T. et al. Higher mitochondrial DNA content in human IUGR placenta. Placenta. 2008; 29(12): 1029-33. https://dx.doi.org/10.1016/j.placenta.2008.09.012.
  36. Chang Y.L., Chao A.S., Peng H.H., Chang S.D., Su S.Y., Chen K.J. et al. Effects of inter-twin vascular anastomoses of monochorionic twins with selective intrauterine growth restriction on the contents of placental mitochondria DNA. BMC Pregnancy Childbirth. 2018; 18(1): 74. https://dx.doi.org/10.1186/ s12884-018-1702-8.
  37. Mando C., De Palma C., Stampalija T., Anelli G.M., Figus M., Novielli C. et al. Placental mitochondrial content and function in intrauterine growth restriction and preeclampsia. Am. J. Physiol. Endocrinol. Metab. 2014; 306(4): 404-13. https://dx.doi.org/10.1152/ajpendo.00426.2013.
  38. Beyramzadeh M., Dikmen Z.G., Erturk N.K., Tuncer Z.S., Akbiyik F. Placental respiratory chain complex activities in high risk pregnancies. J. Matern. Fetal Neonatal Med. 2017; 30(24): 2911-7. https://dx.doi.org/ 10.1080/14767058.2016.1268594.
  39. Novielli C., Mando C., Tabano S., Anelli G.M., Fontana L., Antonazzo P. et al. Mitochondrial DNA content and methylation in fetal cord blood of pregnancies with placental insufficiency. Placenta. 2017; 55: 63-70. https:// dx.doi.org/10.1016/j.placenta.2017.05.008.
  40. Jones R., Pena J., Mystal E., Marsit C., Lee M.J., Stone J. et al. Mitochondrial and glycolysis-regulatory gene expression profiles are associated with intrauterine growth restriction. J. Matern. Fetal Neonatal Med. 2018; Sep.25: 1-10. https:// dx.doi.org/10.1080/14767058.2018.1518419.
  41. Leduc L., Levy E., Bouity-Voubou M., Delvin E. Fetal programming of atherosclerosis: possible role of the mitochondria. Eur. J. Obstet. Gynecol. Reprod. Biol. 20101; 49(2): 127-30. https://dx.doi.org/10.1016/j. ejogrb.2009.12.005.
  42. Saks V., Kuznetsov A.K, Gonzalez-Granillo M., Tepp K., Timohhina N., Karu-Varikmaa M. et al. Intracellular energetic units regulate metabolism in cardiac cells. J. Mol. Cell. Cardiol. 2012; 52(2): 419-36. https://dx.doi.org/10.1016/j. yjmcc.2011.07.015.
  43. Gonzalez-Tendero A., Torre I., Garcia-Canadilla P., Crispi F., Garcia-Garcia F., Dopazo J. et al. Intrauterine growth restriction is associated with cardiac ultrastructural and gene expression changes related to the energetic metabolism in a rabbit model. Am. J. Physiol. Heart Circ. Physiol. 2013; 305(12): 1752-60. https://dx.doi.org/10.1152/ajpheart.00514.2013.
  44. Brown L.D., Hay W.W. Jr. Impact of placental insufficiency on fetal skeletal muscle growth. Mol. Cell. Endocrinol. 2016; 435: 69-77. https://dx.doi. org/10.1016/j.mce.2016.03.017.
  45. Ishii T., Miyazawa M., Takanashi Y., Tanigawa M., Yasuda K., Onouchi H. et al. Genetically induced oxidative stress in mice causes thrombocytosis, splenomegaly and placental angiodysplasia that leads to recurrent abortion. Redox Biol. 2014; 2: 679-85. https://dx.doi.org/10.1016/j.redox.2014.05.001.
  46. Lyu S.W., Song H., Yoon J.A., Chin M.U., Sung S.R., Kim Y.S. et al. Transcriptional profiling with a pathway-oriented analysis in the placental villi of unexplained miscarriage. Placenta. 2013; 34(2): 133-40. https://dx.doi.org/ 10.1016/j.placenta.2012.12.003.
  47. Прокопенко В.М., Павлова Н.Г., Арутюнян А.В. Прооксидантная и антиоксидантная системы в митохондриях плаценты при ее дисфункции. Журнал акушерства и женских болезней. 2010; 59(5): 56-62.
  48. Pang W., Zhang Y., Zhao N., Darwiche S.S., Fu X., Xiang W. Low expression of Mfn2 is associated with mitochondrial damage and apoptosis in the placental villi of early unexplained miscarriage. Placenta. 2013; 34(7): 613-8. https:// dx.doi.org/10.1016/j.placenta.2013.03.013.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies