Implications of mitochondrial DNA copy number in cumulus cells in late reproductive-age women


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To estimate mitochondrial DNA (mtDNA) copy number in cumulus cells (CC) in patients of late reproductive age in in-vitro fertilization programs and to analyze the relationship of the indicators under study with the parameters of oogenesis, embryogenesis, embryo ploidy, and treatment outcomes. Subjects and methods. A prospective study was conducted to determine mtDNA copy number in 454 CC from 67 patients aged 35-45years. The relative level of mtDNA was determined by real time polymerase chain reaction. Results. A cohort of patients with a mean age of 37.8years showed a statistically significant relationship between the mean level of mtDNA in CC and age (p = 0.008), as well as the level of anti-Mtillerian hormone (p = 0.003). There was no correlation between mtDNA copy number in CC and oocyte maturity, fertilization rate, morpho- logical quality, and blastocyst ploidy. There was a tendency to an increase in mtDNA levels in CC in the embryo implantation group versus the non-embryo implantation group (p = 0.08). Conclusion. The determination of mtDNA copy number in CC can become a reliable biomarker of reproductive system aging, takin into consideration that the age given in the passport does not always reflect the true fertility potential of women. Also, the estimation of the level of mtDNA in CC may become a possible predictor of embryo implantation potential. However, further randomized trials are needed.

Full Text

Restricted Access

About the authors

A. I Korolkova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: zaikinaai@icloud.com
PhD student of the1-st gynecology department 117997 Moscow, ak. Oparinastreet, 4. Тel: +7(915)322-08-79

N. G Mishieva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: nondoc555@mail.ru
MD, Senior researcher of 1-st gynecology department 117997 Moscow, ak. Oparinastreet, 4. Тel: +7(915)322-08-79

B. A Martazanova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: bellamart88@mail.ru
Ph.D. of the1-st gynecology department 117997 Moscow, ak. Oparinastreet, 4. Тel: +7(915)322-08-79

O. V Burmenskaya

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: o_bourmenskaya@oparina4.ru
MD, Researcher of Molecular-genetic Laboratory 117997 Moscow, ak. Oparinastreet, 4. Тel: +7(915)322-08-79

M. A Veyukova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: veymary@gmail.com
PhD, embryologist of the 1-st gynecology department 117997 Moscow, ak. Oparinastreet, 4. Тel: +7(915)322-08-79

A. N Ekimov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_ekimov@oparina4.ru
MD, Geneticist, Laboratory of Molecular Genetic Techniques 117997 Moscow, ak. Oparinastreet, 4. Тel: +7(915)322-08-79

D. Yu Trofimov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: d_trofimov@oparina4.ru
MD, Head of the Laboratory of Molecular Genetic Techniques 117997 Moscow, ak. Oparinastreet, 4. Тel: +7(915)322-08-79

A. N Abubakirov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: nondoc555@yahoo.com
PhD, Head of the 1-st gynecology department 117997 Moscow, ak. Oparinastreet, 4. Тel: +7(915)322-08-79

References

  1. Haadsma M.L., Groen H., Mooij T.M., Burger C.W., Broekmans F.J., Lambalk C.B., Leeuwen F.E., Hoek A. Miscarriage risk for IVF pregnancies in poor responders to ovarian hyperstimulation. Reprod Biomed Online 2010; 20: 191-200. https://doi.org/(..)6/j.rbmo.2009.11.005
  2. van der Stroom E.M., Konig T.E., van Dulmen-den Broeder E., Elzinga W.S., van Montfrans J.M., Haadsma M.L., Lambalk C.B. Early menopause in mothers of children with Down syndrome? Fertil Steril. 2011; 96: 985-990. doi: 10.1016/j. fertnstert.2011.07.1149.
  3. Lekamge D.N., Barry M., Kolo M., Lane M., Gilchrist R.B., Tremellen K.P. AntiMullerian hormone as a predictor of IVF outcome. Reprod Biomed Online. 2007; 14: 602-610. doi: 10.1016/s1472-6483(10)61053-x
  4. Levi A.J., Raynault M.F., Bergh P.A., Drews M.R., Miller B.T., Scott R.T. Jr. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril 2001; 76: 666-669. doi: 10.1016/s0015-0282(01)02017-9
  5. Aiken C.E., Tarry-Adkins J.L., Ozanne S.E. Suboptimal nutrition in utero causes DNA damage and accelerated aging of the female reproductive tract. FASEB J 2013; 27:3959-65. doi: 10.1096/fj.13-234484.
  6. May-Panloup P., Boucret L., Chao de la Barca J.M., Desquiret-Dumas V., Ferre-L’Hotellier V., Moriniere C., Descamps P., Procaccio V., Reynier P. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update. 2016; 22(6):725-743. doi: 10.1093/humupd/dmw028
  7. Aiken C.E., Tarry-Adkins J.L., Penfold N.C., Dearden L., Ozanne S.E. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. FASEB J. 2016 Apr; 30(4): 1548-1556. doi: 10.1096/fj.15-280800.
  8. Ene A.C., Park S., Edelmann W., Taketo T. Caspase 9 is constitutively activated in mouse oocytes and plays a key role in oocyte elimination during meiotic prophase progression. Dev Biol 2013; 377: 213-223. doi: 10.1016/j.ydbio.2013.01.027
  9. Klein N.A., Harper A.J., Houmard B.S., Sluss P.M., Soules M.R. Is the short follicular phase in older women secondary to advanced or accelerated dominant follicle development? J Clin Endocrinol Metab. 2013; 87: 5746-5750 doi: 10.1210/jc.2002-020622.
  10. Wu Y., Zhang N., Li Y.H., Zhao L., Yang M., Jin Y., Xu Y.N., Guo H. Citrinin exposure affects oocyte maturation and embryo development by inducing oxidative stress-mediated apoptosis. Oncotarget. 201728. doi:10.18632/ oncotarget.15776. https://doi.org/10.18632/oncotarget.15776
  11. Ogino M., Tsubamoto H., Sakata K., et al. Mitochondrial DNA copy number in cumulus cells is a strong predictor of obtaining good-quality embryos after IVF. J Assist Reprod Genet. 2016; 33(3): 367-71. https://doi.org/10.1007/ s10815-015-0621-0
  12. Turner N., Robker R. Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes playa role? MolHumReprod. 2015; 21(1): 23-30. doi: 10.1093/molehr/ gau042
  13. Горшинова В.К., Цвиркун Д.В., Десяткова Н.В., Высоких М.Ю., Смольникова В.Ю. Дисфункция митохондрий как один из механизмов нарушения репродуктивной функции при ожирении. Акушерство и гинекология. 2014; 7
  14. Скулачев В., Богачев А., Каспаринский Ф. Мембранная биоэнергетика М.: Изд-во Московского ун-та, 2010. 367 c.
  15. Grindler N.M., Moley K.H. Maternal obesity, infertility and mitochondrial dysfunction: potential mechanisms emerging from mouse model systems. Mol Hum Reprod. 2013; 19(8): 486-94. http://dx.doi.org/10.1093/molehr/ gat026
  16. Cagnone G., Tsai T-S., Makanji Y., Matthews P.M., Gould J.A., Bonkowski M.S., et al. Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Scientific Reports. 2016; 6: 1-15. 23229. https://doi.org/10.1038/srep23229
  17. Simsek-Duran F., Li F., Ford W., Swanson R.J., Jones H.W. Jr., Castora F.J..Ageassociated metabolic and morphologic changes in mitochondria of individual mouse and hamster oocytes. PLoS One. 2013; 8: e64955. doi: 10.1371/ journal.pone.0064955. Print 2013.
  18. Dumesic D.A., Guedikian A.A., Madrigal V.K., Phan J.D., Hill D.L., Alvarez J.P., Chazenbalk G.D. Cumulus cell mitochondrial resistance to stress in vitro predicts oocyte development during assisted reproduction. J Clin Endocrinol Metab 2016; 101: 2235-45. doi: 10.1210/jc.2016-1464
  19. Desquiret-Dumas V., Clément A., Seegers V., Boucret L., Ferré-L’Hotellier V., Bouet P.E., Descamps P., Procaccio V., Reynier P., May-Panloup P. The mitochondrial DNA content of cumulus granulosa cells is linked to embryo quality. Hum Reprod. 2017; 32(3): 607-614. doi: 10.1093/humrep/dew341
  20. Taugourdeau A., Desquiret-Dumas V., Hamel J. F., Chupin S., Boucret L., Ferré -L’Hotellier V., Bouet P.E., Descamps P., Procaccio V., Reynier P., MayPanloup P. The mitochondrial DNA content of cumulus cells may help predict embryo implantation. J Assist Reprod Genet. 2019; 36 (2): 223-228. https://doi.org/10.1007/s10815-018-1348-5
  21. Gardner D.K., Schoolcraft W.B. In Vitro Culture of Human Blastocyst. In: Jansen R. and Mortimer D., Eds., Towards Reproductive Certainty: Infertility and Genetics Beyond, Parthenon Press, Carnforth, 1999; 377-388.
  22. Boucret L., Chao de la Barca J.M., Moriniere C., Desquiret V., Ferre-L’Hotellier V., Descamps P., Marcaillou C., Reynier P., Procaccio V., May-Panloup P. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum Reprod. 2015; 30: 1653-64. doi: 10.1093/humrep/dev114.
  23. Королькова А.И., Мишиева Н.Г., Мартазанова Б.А., Бурменская О.В., Екимов А.Н., Трофимов Д.Ю., Веюкова М.А., Кириллова А.О., Абубакиров А.Н. Повышение эффективности программ ЭКО на основании определения копийности митохондриальной ДНК в трофэктодерме эмбрионов. Акушерство и гинекология. 2019; 3: 98-104.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies