Preimplantation analysis of blastocyst transcriptome


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review is devoted to studying the influence of various factors on the expression of human blastocyst genes and to identifying transcripts that may be potential markers for successful implantation. Based on the data available in the world scientific literature, it has been shown that preimplantation analysis of the blastocyst transcriptome can be a tool for assessing the blastocyst implantation potential, which will be able to selectively transfer a single embryo during in vitro fertilization.

Full Text

Restricted Access

About the authors

A. G Volkova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: agvolkova33@gmail.com
Cand. Biol. Sci.; Researcher 4, Oparin St., Moscow 117997, Russia

N. P Makarova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: np.makarova@gmail.com
BD; Leading Researcher 4, Oparin St., Moscow 117997, Russia

A. V Timofeeva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: v_timofeeva@oparina4.ru
Cand. Biol. Sci.; Head, Laboratory of Applied Transcriptomics 4, Oparin St., Moscow 117997, Russia

E. A Gorodnova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: e_gorodnova@oparina4.ru
Cand. Med. Sci.; Head, Center for Clinical Trials, Department for Organization of Research Activities 4, Oparin St., Moscow 117997, Russia

References

  1. Vassena R., Boue S., Gonzdlez-Roca E., Aran B., Auer H., Izpisua Belmonte J.C. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development. 2011. 138(17): 3699-709. https://dx.doi.org/10.1242/dev.064741.
  2. Yan L., Yang M., Guo H., Yang L., Wu J., Li R. et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 2013; 20(9): 1131-9. https://dx.doi.org/10.1038/nsmb.2660.
  3. Jukam D., Shariati S.A.M., Skotheim J.M. Zygotic genome activation in vertebrates. Dev. Cell. 2017; 42(4): 316-32. https://dx.doi.org/10.1016/j. devcel.2017.07.026.
  4. Shaw L., Sneddon S., Zeef L., Kimber S., Brison D. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development. PLoS One. 2013. 8(5). e64192. https:// dx.doi.org/10.1371/journal.pone.0064192.
  5. Bashiri A., Halper K.I., Orvieto R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod. Biol. Endocrinol. 2018; 16(1): 121. https://dx.doi.org/10.1186/s12958-018-0414-2.
  6. Simon A., Laufer N. Assessment and treatment of repeated implantation failure (RIF). J. Assist. Reprod. Genet. 2012. 29(11): 1227-39. https://dx.doi. org/10.1007/s10815-012-9861-4.
  7. Coughlan C., Ledger W., Wang Q., Liu F., Demirol A., Gurgan T. et al. Recurrent implantation failure: definition and management. Reprod. Biomed. Online. 2014; 28(1): 14-38. https://dx.doi.org/10.1016/j.rbmo.2013.08.011.
  8. Choi H.W., Park Y.S., Lee S.H., Lim C.K., Seo J.T., Yang K.M. Effects of maternal age on embryo quality and pregnancy outcomes using testicular sperm with intracytoplasmic sperm injection. Clin. Exp. Reprod. Med. 2016; 43(4): 221-7. https://dx.doi.org/10.5653/cerm.2016.43.4.221.
  9. Nagaoka S.I., Hassold T.J., Hunt P.A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 2012; 13(7): 493-504. https://dx.doi.org/10.1038/nrg3245.
  10. Herbert M., Kalleas D., Cooney D., Lamb M., Lister L. Meiosis and maternal aging: insights from aneuploid oocytes and trisomy births. Cold Spring Harb. Perspect. Biol. 2015; 7(4): a017970. https://dx.doi.org/10.1101/cshperspect. a017970.
  11. Kawai K., Harada T., Ishikawa T., Sugiyama R., Kawamura T., Yoshida A. et al. Parental age and gene expression profiles in individual human blastocysts. Sci. Rep. 2018; 8(1): 2380. https://dx.doi.org/10.1038/s41598-018-20614-8.
  12. McCallie B.R., Parks J.C., Trahan D., Jones K., Coate B., Griffin D.K. et al. Compromised global embryonic transcriptome associated with advanced maternal age. J. Assist. Reprod. Genet. 2019; 36(5): 915-24. https://dx.doi. org/10.1007/s10815-019-01438-5.
  13. McCallie B.R., Parks J.C., Griffin D.K., Schoolcraft W.B., Katz-Jaffe M.G. Infertility diagnosis has a significant impact on the transcriptome of developing blastocysts. Mol. Hum. Reprod. 2017; 23(8): 549-56. https://dx.doi.org/10.1093/ molehr/gax034.
  14. Denomme M.M., McCallie B.R., Parks J.C., Booher K., Schoolcraft W.B., Katz-Jaffe M.G. Inheritance of epigenetic dysregulation from male factor infertility has a direct impact on reproductive potential. Fertil. Steril. 2018; 110(3): 41928. e1. https://dx.doi.org/10.1016/j.fertnstert.2018.04.004.
  15. Kleijkers S.H., Eijssen L.M., Coonen E., Derhaag J.G., Mantikou E., Jonker M.J. et al. Differences in gene expression profiles between human preimplantation embryos cultured in two different IVF culture media. Hum. Reprod. 2015; 30(10): 2303-11. https://dx.doi.org/10.1093/humrep/ dev179.
  16. Sayed A., Hoelker M., Rings F., Salilew D., Jennen D., Tholen E. et al. Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genomics. 2006; 28(1): 84-96. https://dx.doi.org/10.1152/physiolgenomics.00111.2006.
  17. Ghanem N., Salilew-Wondim D., Gad A., Tesfaye D., Phatsara C., Tholen E. et al. Bovine blastocysts with developmental competence to term share similar expression of developmentally important genes although derived from different culture environments. Reproduction. 2011; 142(4): 551-64. https://dx.doi. org/10.1530/REP-10-0476.
  18. Parks J.C., McCallie B.R, Janesch A.M., Schoolcraft W.B., Katz-Jaffe M.G. Blastocyst gene expression correlates with implantation potential. Fertil. Steril. 2011; 95(4): 1367-72. https://dx.doi.org/10.1016/j.fertnstert.2010.08.009.
  19. Cimadomo D., Capalbo A., Ubaldi F.M., Scarica C., Palagiano A., Canipari R., Rienzi L. The impact of biopsy on human embryo developmental potential during preimplantation genetic diagnosis. Biomed. Res. Int. 2016; 2016: 7193075. https://dx.doi.org/10.1155/2016/7193075.
  20. Kokkali G, Vrettou C, Traeger-Synodinos J., Jones G.M., Cram D.S., Stavrou D. et al. Birth of a healthy infant following trophectoderm biopsy from blastocysts for PGD of beta-thalassaemia major. Hum. Reprod. 2005; 20(7): 1855-9. https://dx.doi.org/10.1093/humrep/deh893.
  21. Scott R.T, Upham K.M., Forman E.J., Zhao T., Treff N.R. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil. Steril. 2013; 100(3): 624-30. https://dx.doi.org/10.1016/j.fertnstert.2013.04.039.
  22. Jones G.M., Cram D.S., Song B., Kokkali G., Pantos K., Trounson A.O. Novel strategy with potential to identify developmentally competent IVF blastocysts. Hum. Reprod. 2008; 23(8): 1748-59. https://dx.doi.org/10.1093/humrep/ den123.
  23. Kirkegaard K., Villesen P., Jensen J.M., Hindkj&r J.J., K0lvraa S., Ingerslev H.J., Lykke-Hartmann K. Distinct differences in global gene expression profiles in non-implanted blastocysts and blastocysts resulting in live birth. Gene. 2015; 571(2): 212-20. https://dx.doi.org/10.1016/j.gene.2015.06.057.
  24. Ntostis P., Kokkali G., Iles D., Huntriss J., Tzetis M., Picton H. et al. Can trophectoderm RNA analysis predict human blastocyst competency? Syst. Biol. Reprod. Med. 2019; 65(4): 312-25. https://dx.doi.org/ 10.1080/19396368.2019.1625085.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies