Correlation of cardiotocographic parameters witt the risk of neonatal hypoxic ischemic encephalopathy


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To determine cardiotocographic (CTG) criteria for the risk of hypoxic ischemic encephalopathy (HIE) varying in severity. Subjects and methods. The prospective case-control study included 180 female patients and their newborn infants. After the birth of a baby, the CTG curves were interpreted by a specialist. Results. A pathological CTG curve was predominant in the study patient group (66.7% vs. 16%; p < 0.0001); a suspicious CTG curve was prevalent in the control group (48.6% vs. 16.7%; p < 0.001). A detailed analysis of CTG data showed the higher frequency of late decelerations in the study group (p <0.001); the presence of variable decelerations did not lead to the emergence of HIE. Bradycardia below 100 beats increased the risk of HIE (p < 0.001). Tachysystole was diagnosed significantly more often in the study patient group (44.4% vs. 12.5%, p < 0.001). No relationship was found between the type of a CTG curve and the grade of neonatal HIE. There were 10(4-14.25), 7(1.75-25.25), and 45(38-52) decelerations in grades 1, 2, and 3 HIE, respectively (p = 0.02). The duration of a CTG curve with decelerations was 36.1 (20.4), 40.8 (24.9), and 59.0 (32.5) min, respectively (p = 0.05). The severity of HIE increased with a larger number of late decelerations (p = 0.03). Conclusion. This paper shows the relationship between the CTG curve parameters and the risk of neonatal HIE. The risk factors for the development of HIE are a pathological type of CTG; a decrease in basal heart rate and variability; late decelerations; bradycardia, and tachysystole. The clinical manifestations of neonatal encephalopathy with a normal or suspicious type of CTG in childbirth may suggest that there are causes of HIE, which are unassociated with intranatal fetal hypoxia.

Full Text

Restricted Access

About the authors

Andrey M. Prikhodko

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_prikhodko@oparina4.ru

Andrey Yu. Romanov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: romanov1553@yandex.ru

Alexandra V. Evgrafova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_evgrafova@oparina4.ru

Oleg R. Baev

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: o_baev@oparina4.ru

References

  1. Kurinczuk J.J., White-Koning M., Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010; 86(6): 329-38. doi: 10.1016/j.earlhumdev.2010.05.010.
  2. Приходько А.М., Киртбая А.Р., Романов А.Ю., Баев О.Р. Биомаркеры повреждения головного мозга у новорожденных. Неонатология: новости, мнения, обучение. 2018; 7(1): 70-6. [Prikhod’ko A.M., Kirtbaya A.R., Romanov A.Yu., Baev O.R. Biomarkers of brain damage in newborns. Neonatology: News, Opinions, Training. 2018; 7(1): 70-6. doi: 10.24411/2308-2402-2018-00009
  3. Douglas-Escobar M., Weiss M.D. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015; 169(4): 397-403. doi: 10.1001/ jamapediatrics.2014.3269.
  4. Hellstrom-Westas L., Rosen I. Continuous brain-fUnction monitoring: state of the art in clinical practice. Semin Fetal Neonatal Med. 2006; 11(6): 503-11. doi: 10.1016/j.siny.2006.07.011
  5. Yatham S., Whelehan V., Archer A., Chandraharan E. Types of intrapartum hypoxia on the cardiotocograph (CTG): do they have any relationship with the type of brain injury in the MRI scan in term babies? J. Obstet Gynaecol. 2019; 1-6. oi: 10.1080/01443615.2019.1652576.
  6. Lundgren C., Brudin L., Wanby AS, Blomberg M. Ante- and intrapartum risk factors for neonatal hypoxic ischemic encephalopathy. J. Matern Fetal Neonatal Med. 2018; 31(12): 1595-1601. doi: 10.1080/14767058.2017.1321628.
  7. Alfirevic Z., Devane D., Gyte G.M.L., Cuthbert A. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database of Systematic Reviews. 2017; 2. Art. No.: CD006066. doi: 10.1002/14651858.CD006066.pub3
  8. Ayres-de-Campos D., Spong C.Y., Chandraharan E., FIGO Intrapartum Fetal Monitoring Expert Consensus Panel. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int J. Gynaecol Obstet. 2015; 131(1):13-24. doi: 10.1016/j.ijgo.2015.06.020.
  9. Martinez-Biarge M., Diez-Sebastian J., Wusthoff C.J., Mercuri E., Cowan F.M. Antepartum and Intrapartum Factors Preceding Neonatal Hypoxic-Ischemic Encephalopathy. Pediatrics. 2013; 132(4): e952-9. doi: 10.1542/peds.2013-0511
  10. Graham E.M., Adami R.R., McKenney S.L., Jennings J.M., Burd I., Witter F.R. Diagnostic accuracy of fetal heart rate monitoring in the identification of neonatal encephalopathy. Obstet Gynecol. 2014; 124(3): 507-13. doi: 10.1097/ AOG.0000000000000424.
  11. Ater S.B., Murray M.L., Hunter J.V. Diagnostic accuracy of fetal heart rate monitoring in the identification of neonatal encephalopathy. Obstet Gynecol. 2014; 124(6): 1211. doi: 10.1097/AOG.0000000000000574.
  12. Hayes B.C., McGarvey C., Mulvany S., Kennedy J., Geary M.P., Matthews T.G., et al. A case-control study of hypoxic-ischemic encephalopathy in newborn infants at >36 weeks gestation. Am J. Obstet Gynecol. 2013; 209(1): 29.e1-29.e19. doi: 10.1016/j.ajog.2013.03.023
  13. Kunz M.K., Loftus R.J., Nichols A.A. Incidence of uterine tachysystole in women induced with oxytocin. J. Obstet Gynecol neonatal Nurs JOGNN. 2013; 42(1):12-8. doi: 10.1111/j.1552-6909.2012.01428.x.
  14. Приходько А.М., Романов А.Ю., Шуклина Д.А., Баев О.Р. Показатели кислотно-основного равновесия и газовый состав артериальной и венозной пуповинной крови в норме и при гипоксии плода. Акушерство и гинекология. 2019; (2):93-7. http://dx.doi.org/10.18565/aig.2019.2.93-97

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies