CONTROLLED HYPOTHERMIA IN COMPLEX THERAPY FOR HYPOXIC ISCHEMIC ENCEPHALOPATHY IN INFANTS WITH BIRTH ASPHYXIA


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To compare the effectiveness of different methods of controlled hypothermia in complex therapy for hypoxic ischemic encephalopathy in infants with birth asphyxia. Materials and methods. The data was collected from 73 birth records and histories of newborns with signs of moderate or severe asphyxia. The newborns were divided into two groups: group I included 46 newborns treated with craniocerebral hypothermia (CCH); group II included 27newborns treated with total hypothermia (TH). Results. During the first hours of life, convulsive activity was observed in 39 (84.8%) and 23 (85.2%) newborns of groups I and II, respectively (p=1.00). According to electroencephalography readings, convulsive activity was confirmed in 33 (84.6%) and 18 (78.3%) infants, respectively (p=0.77). During hypothermia, convulsive activity persisted in 39 (100%) and 4 (17.4%) newborns treated with CCH and TH, respectively (p<0.001). By the end of controlled hypothermia, there was a cessation of convulsions in 11 (28.2%) and 19 (82.6%) newborns treated with CCH and TH, respectively (OR 0.34, 95% CI: 0.23- 0.60), (p<0.001). All the newborns survived and were provided with the second stage of developmental care. Positive dynamics in newborn’s neurological status was observed in 23 (50%) infants of group I and 26 (96.3%) infants of group II at the discharge from hospital after the second stage of developmental care (OR 0.53, 95% CI: 0.49- 0.72, p<0.001); to one year of age dynamics was observed in 9 (28.1%) and 26(96.3%) newborns (OR 0.34, 95% CI: 0.23-0.60, p<0.001), respectively. Conclusion. When CCH and TH are applied in complex therapy for full-term infants with moderate to severe birth asphyxia, they can help prevent the development of severe neurological consequences. TH has advantages over CCH due to the decreased period of newborn’s artificial lung ventilation, faster control of convulsions and favorable outcomes for children during the first year of life.

Full Text

Restricted Access

About the authors

Galina M. SAVELYEVA

Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: gms@cfp.ru
RAS Academician, Doctor of Medical Sciences, professor; Professor of the Department of Obstetrics and Gynecology, Pediatric Faculty Moscow, Russia

Raisa I. SHALINA

Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: raisa.shalina@gmail.com
Doctor of Medical Sciences, professor; Professor of the Department of Obstetrics and Gynecology, Pediatric Faculty Moscow, Russia

Aliya A. ANANKINA

Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: kuzina.aliya@yandex.ru
Resident of the Department of Obstetrics and Gynecology, Pediatric Faculty Moscow, Russia

Zhanna Yu. KUNYAKH

Centre for Family Planning and Reproduction, Moscow Department of Health

Email: kunzhan2007@rambler.ru
Head of the Intensive Care Unit for Newborns and Premature Infants Moscow, Russia

Lali G. SICHINAVA

Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: lalisichinava@gmail.com
Doctor of Medical Sciences, professor; Professor of the Department of Obstetrics and Gynecology, Pediatric Faculty Moscow, Russia

Yulia V. SOKOLOVSKAYA

Clinical Hospital Lapino, Group of Companies "Mother and Child"

Email: y.sokolovskaya@mcclinics.ru
PhD; Head of Intensive Care Unit for Newborns Moscow Region, Russia

Dmitrii S. SPIRIDONOV

Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: spiridonov_ds@rsmu.ru
PhD; Associate professor of the Department of Obstetrics and Gynecology, Pediatric Faculty Moscow, Russia

References

  1. Liu L., Oza S., Hogan D., Perin J., Rudan I., Lawn J.E. et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015; 385(9966): 430-40. https://dx.doi.org/10.1016/s0140-6736(14)61698-6.
  2. Савельева Г.М., Шалина Р.И., Смирнова А.А., Кунях Ж.Ю., Евстратова О.П., Симухина М.А. Асфиксия доношенных новорожденных. Комплексная терапия с использованием краниоцеребральной гипотермии. Акушерство и гинекология. 2015; 4: 19-24.
  3. Nelson K.B., Ellenberg J.H. Apgar scores as predictors of chronic neurologic disability. Pediatrics. 1981; 68: 36-44.
  4. Dammann O., Ferriero D., Gressens P. Neonatal encephalopathy or hypoxic-ischemic encephalopathy? Appropriate terminology matters. Pediatr. Res. 2011; 70(1): 1-2. https://dx.doi.org/10.1203/PDR.0b013e318223f38d.
  5. Симченко А.В. Особенности течения неонатального периода у доношенных новорожденных детей с гипоксически-ишемической энцефалопатией. Медицинские новости. 2018; 5: 37-40.
  6. Perlman J.M. Brain injury in the term infant. Semin. Perinatol. 2004. 28(6): 415-24. https://dx.doi.org/10.1053/j.semperi.2004.10.003.
  7. Gluckman P.D., Williams C.E. When and why do brain cells die? Dev. Med. Child Neurol. 1992; 34(11): 1010-4. https://dx.doi.org/10.1111/j.1469-8749.1992. tb11407.x.
  8. Inder T.E., Volpe J.J. Mechanisms of perinatal brain injury. Semin. Neonatol. 2000; 5(1) : 3-16. https://dx.doi.org/10.1053/siny.1999.0112.
  9. Savelieva G.M., Sichinava L.G., Shalina R.I., Kurtser M.A. Hypothermia for neonatal asphyxia: past, present, and future. Neonatal Intensive Care. 2018; 31(4): 32-3.
  10. Fatemi A., Wilson M. A., Johnston M.V. Hypoxic ischemic encephalopathy in the term infant. Clin. Perinatol. 2009; 36(4): 835-58. https://dx.doi.org/10.1016/j. clp.2009.07.011.
  11. Brossner G., Fischer M., Schubert G., Metzler B., Schmutzhard E. Update on therapeutic temperature management. Crit. Care. 2012; 16(Suppl. 2): A1-28. (Abstracts of the 2nd Innsbruck Hypothermia Symposium. Portoroz, Slovenia. June 7-9, 2012.)
  12. Markgraf C.G., Clifton G.L., Moody M.R. Treatment window for hypothermia in brain injury. J. Neurosurg. 2001; 95: 979-83. https://dx.doi.org/10.3171/ jns.2001.95.6.0979.
  13. Battin M.R., Penrice J., Gunn T.R., Gunn A.J. Treatment of term infants with head cooling and mild systemic hypothermia (35.0 degrees C and 34.5 degrees C) after perinatal asphyxia. Pediatrics. 2003; 111(2): 244-51. https://dx.doi. org/10.1542/peds.111.2.244.
  14. Van Leeuwen G.M., Hand J.W., Lagendijk J.W., Azzopardi D.V., Edwards A.D. Numerical modeling of temperature distributions within the neonatal head. Pediatr. Res. 2000; 48(3): 351-6. https://dx.doi.org/10.1203/00006450-200009000-00015.
  15. Jacobs S.E., Berg M., Hunt R., Tarnow-Mordi W.O., Inder T.E., Davis P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013; (1): CD003311. https://dx.doi.org/10.1002/14651858. CD003311.pub3.
  16. Sarnat H.B., Sarnat M.S. Neonatal encephalopathy following fetal distress: A clinical and electroencphalographic study. Arch. Neurol. 1976; 33(10): 696-705. https://dx.doi.org/10.1001/archneur.1976.00500100030012.
  17. Классификация перинатальных поражений нервной системы и их последствий у детей первого года жизни. Методические рекомендации. М.: ВУНМЦ Росздрава; 2007. 88с.
  18. Polderman K.H. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet. 2008; 371(9628): 1955-69. https:// dx.doi.org/10.1016/S0140-6736(08)60837-5.
  19. Committee on Obstetric Practice, ACOG; American Academy of Pediatrics; Committee on Fetus and Newborn, ACOG. ACOG Committee Opinion. Number 333, May 2006 (replaces No. 174, July 1996): The Apgar score. Obstet. Gynecol. 2006; 107(5): 1209-12. https://dx.doi.org/10.1097/00006250-200605000-00051.
  20. Use and abuse of the Apgar score. Committee on Fetus and Newborn, American Academy of Pediatrics, and Committee on Obstetric Practice, American College of Obstetricians and Gynecologists. Pediatrics. 1996; 98(1): 141-2.
  21. Glass H.C., Glidden D., Jeremy R.J., Barkovich A.J., Ferriero D.M., Miller S.P. Clinical neonatal seizures are independently associated with outcome in infants at risk for hypoxic-ischemic brain injury. J. Pediatr. 2009; 155(3): 318-23. https://dx.doi.org/10.1016/j.jpeds.2009.03.040.
  22. Scher M.S. Neonatal seizures and brain damage. Pediatr. Neurol. 2003; 29(5): 381-90. https://dx.doi.org/10.1016/s0887-8994(03)00399-0.
  23. Holmes G.L. Effects of seizures on brain development: lessons from the laboratory. Pediatr. Neurol. 2005; 33(1): 1-11. https://dx.doi.org/10.1016/j. pediatrneurol.2004.12.003.
  24. Boylan G.B., Rennie J.M., Chorley G., Pressler R.M., Fox G.F., Farrer K. et al. Second-line anticonvulsant treatment of neonatal seizures: a video-EEG monitoring study. Neurology. 2004: 62(3): 486-8. https://dx.doi.org/10.1212/01. wnl.0000106944.59990.e6.
  25. Edwards A.D., Yue X., Squier M.V., Thoresen M., Cady E.B., Penrice J. et al. Specific inhibition of apoptosis after cerebral hypoxic-ischemia by moderate post-insult hypothermia. Biochem. Biophys. Res. Commun. 1995; 217(3): 1193-9.
  26. Robertson C.M., Perlman M. Follow-up of the term infant after hypoxic-ischemic encephalopathy. Paediatr. Child Health. 2006; 11(5): 278-82.
  27. Aslami H., Binnekade J.M., Horn J., Huissoon S., Jujfermans N.P. The effect of induced hypothermia on respiratory parameters in mechanically ventilated patients. Resuscitation. 2010; 81(12): 1723-5. https://dx.doi.org/10.1016/j. resuscitation.2010.09.006.
  28. Радзинский В.Е., Костин И.Н., Златовратская Т.В., Котайш Г.А., Фаткуллин И.Ф., Григорьева Е.Е. Доношенные дети, подвергшиеся реанимации. Анализ акушерской тактики. Акушерство и гинекология. 2007; 3: 42-7.
  29. Azzopardi D., Strohm B., Marlow N., Brocklehurst P., Deierl A., Eddama O. et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N. Engl. J. Med. 2014; 371(2): 140-9. https://dx.doi.org/10.1056/NEJMoa1315788.
  30. Jacobs S.E., Berg M., Hunt R., Tarnow-Mordi W.O., Inder T.E., Davis P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013; (1): CD003311. https://dx.doi.org/10.1002/14651858. CD003311.pub3.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies