The role of maternal gut microbiota in spontaneous preterm birth


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To study the potential correlation between maternal gut microbiota and preterm labor. Materials and methods. A prospective case control study included 40 puerperas. The patients were divided into two groups: group I consisted of women who had spontaneous preterm birth; group II included healthy women who had full-term births. The study of the gut microbiota was carried out using a culture method. Results. The gut microbiota of patients in both groups was presented mainly by the microorganisms of Bifidobacterium spp., Lactobacillus spp., Bacteroides spp., Enterococcus and Escherichia spp. In group I, patients who gave birth prematurely had more frequently opportunistic pathogens of facultative anaerobic origin, namely Staphylococcus aureus (p=0.0365) and/or Klebsiella pneumoniae (p=0.0217); they had a higher logarithmic value of colony-forming units (CFU) compared to the group of patients who had full-term births; patients of group I also showed a poorer growth of obligate anaerobes - Bacteroides spp. (p=0.0416); the results were statistically significant. Conclusion. The gut microbiota is likely to play a role in spontaneous preterm birth.

Full Text

Restricted Access

About the authors

Ksenia A. Gorina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: k_gorina@oparina4.ru
Junior researcher at the Department of Pathology of Pregnancy

Zulfiya S. Khodzhaeva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: zkhodjaeva@mail.ru
M.D., Professor, Deputy Director for Research of Obstetrics Instituteof the Institution (Department of Obstetrics)

Vera V. Muravieva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_muravieva@oparina4.ru
Ph.D. in Biological sciences, senior research officer Laboratory Microbiology

Kamilla T. Muminova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: k_muminova@oparina4.ru
Ph.D., Junior researcher at the Department of Pathology of Pregnancy

Andrew Ye. Donnikov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_donnikov@oparina4.ru
Ph.D., Head of the Laboratory of Molecular Genetic Methods

Tatyana V. Priputnevich

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: priputl@gmail.com
M.D., Head of the Departament of Microbiology and Clinical Pharmacology

References

  1. Lawn J.E., Cousens S., Zupan J.; Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: when? Where? Why? Lancet. 2005; 365(9462): 891900. https://dx.doi.org/10.1016/S0140-6736(05)71048-5.
  2. NICE National Institute for Health and Care Excellence. Preterm labour and birth: NICE guideline. 20 November, 2015.
  3. Menon R. Spontaneous preterm birth, a clinical dilemma: etiologic, pathophysiologic and genetic heterogeneities and racial disparity. Acta Obstet. Gynecol. Scand. 2008; 87(6): 590-600. https://dx.doi. org/10.1080/00016340802005126.
  4. Boyle A.K., Rinaldi S.F., Norman J.E., Stock S.J. Preterm birth: Inflammation, fetal injury and treatment strategies. J. Reprod. Immunol. 2017; 119: 62-6. https://dx.doi.org/10.1016/j.jri.2016.11.008.
  5. Hyman R.W, Fukushima M., Jiang H., Fung E., Rand L, Johnson B. et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod. Sci. 2014; 21(1): 32-40. https://dx.doi.org/10.1177/ 1933719113488838.
  6. Ходжаева З.С., Припутневич Т.В., Муравьева В.В., Гусейнова Г.Э., Горина К.А. Оценка состава и стабильности микробиоты влагалища у беременных в процессе динамического наблюдения. Акушерство и гинекология. 2019; 7: 30-8. [Khodzhaeva Z.S., Priputnevich T.V., Murav'eva V.V., Guseinova G.E., Gorina K.A., Mishina N.D. The composition and stability of the vaginal microbiota in pregnant women during dynamic observation. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2019; (7):30-8 (in Russian)]. https://dx.doi.org/10.18565/aig.2019.7.30-38.
  7. Broms G., Granath F., Linder M., Stephansson O., Elmberg M., Kieler H. Birth outcomes in women with inflammatory bowel disease: effects of disease activity and drug exposure. Inflamm. Bowel Dis. 2014; 20(6): 1091-8. https://dx.doi. org/10.1097/MIB.0000000000000060.
  8. Dahl C., Stanislawski M., Mandal S., Lozupone C., Clemente J.C., Knight R., Stigum H., Eggesb M. Gut microbiome of mothers delivering prematurely shows reduced diversity and lower relative abundance of Bifidobacterium and Streptococcus. PLoS One. 2017; 12(10): e0184336. https://dx.doi.org/10.1371/ journal.pone.0184336.
  9. Power S.E., O’Toole P.W., Stanton C., Ross R.P., Fitzgerald G.F. Intestinal microbiota, diet and health. Br. J. Nutr. 2014; 111(3): 387-402. https://dx.doi. org/10.1017/S0007114513002560.
  10. Edwards S.M., Cunningham S.A., Dunlop A.L., Corwin E.J. The maternal gut microbiome during pregnancy. MCN Am. J. Matern. Child Nurs. 2017; 42(6): 310-7. https://dx.doi.org/10.1097/NMC.0000000000000372.
  11. Mokkala K., Roytio H., Munukka E., Pietila S., Ekblad U., Ronnemaa T. et al. Gut Microbiota richness and composition and dietary intake of overweight pregnant women are related to serum zonulin concentration, a marker for intestinal permeability. J. Nutr. 2016; 146(9): 1694-700. https://dx.doi.org/10.3945/ jn.116.235358.
  12. Cani P.D., Osto M., Geurts L., Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012; 3(4): 279-88. https://dx.doi.org/10.4161/ gmic.19625.
  13. Kashtanova D.A., Popenko A.S., Tkacheva O.N., Tyakht A.B., Alexeev D.G., Boytsov S.A. Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition. 2016; 32(6): 620-7. https://dx.doi. org/10.1016/j.nut.2015.12.037.
  14. Kim C.J., Romero R., Chaemsaithong P., Kim J.S. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am. J. Obstet. Gynecol. 2015; 213(4, Suppl.): S53-69. https://dx.doi.org/10.1016/j. ajog.2015.08.041.
  15. DiGiulio D.B., Romero R., Kusanovic J.P., Gomez R., Kim C.J., Seok K.S. et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm prelabor rupture of membranes. Am. J. Reprod. Immunol. 2010; 64(1): 38-57. https://dx.doi.org/10.1111/j.1600-0897.2010.00830.x.
  16. Nuriel-Ohayon M., Neuman H., Koren O. Microbial changes during pregnancy, birth, and infancy. Front. Microbiol. 2016; 7: 1031. https://dx.doi.org/10.3389/ fmicb.2016.01031.
  17. Vinturache A.E., Gyamfi-Bannerman C., Hwang J., Mysorekar I.U., Jacobsson B. Maternal microbiome - A pathway to preterm birth. Semin. Fetal Neonatal Med. 2016; 21(2): 94-9. https://dx.doi.org/10.1016/j.siny.2016.02.004.
  18. Pickard J.M., Zeng M.Y., Caruso R., Ndnez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 2017; 279(1): 70-89. https://dx.doi.org/10.1111/imr.12567.
  19. Arumugam M., Raes J., Pelletier E., Le Pastier D., Yamada T., Mende D.R. et al. Enterotypes of the human gut microbiome. Nature. 2011; 473(7346): 174-80. https://dx.doi.org/10.1038/nature09944.
  20. Hughes E.R., Winter M.G., Duerkop B.A., Spiga L., Furtado de Carvalho T., Zhu W. et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe. 2017; 21(2): 208-19. https://dx.doi.org/10.1016/j.chom.2017.01.005.
  21. Litvak Y., Byndloss M.X., Tsolis R.M., Baumler A.J. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. 2017; 39: 1-6. https://dx.doi.org/10.1016/ j.mib.2017.07.003.
  22. Cani P.D., Bibiloni R., Knauf C., Waget A., Neyrinck A.M., Delzenne N.M., Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008; 57(6): 1470-81. https://dx.doi.org/10.2337/db07-1403.
  23. Chu D.M., Seferovic M., Pace R.M., Aagaard K.M. The microbiome in preterm birth. Best Pract. Res. Clin. Obstet. Gynaecol. 2018; 52: 103-13. https://dx.doi. org/10.1016/j.bpobgyn.2018.03.006.
  24. Younes J.A., Lievens E., Hummelen R., van der Westen R., Reid G., Petrova M.I. Women and their microbes: the unexpected friendship. Trends Microbiol. 2018; 26(1): 16-32. https://dx.doi.org/10.1016/j.tim.2017.07.008.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies