Amniotic fluid composition in pregnant women at high risk of preterm birth


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To investigate the composition of the amniotic fluid in pregnant women at high risk of preterm birth. Materials and methods. The study analyzed the composition of the amniotic fluid of 46 pregnant women aged 19 to 40 years who were at a high risk of preterm birth. The patients were categorized into two groups based on pregnancy outcomes, including 12 women with preterm birth (group I) and 34 women who had a full-term delivery (group 2). Amniotic fluid was collected using diagnostic transabdominal amniocentesis. The amniotic fluid analysis was carried out using hematological and biochemical automatic analyzers. Results. The composition of the amniotic fluid differed statistically significantly between the study groups regarding the number of lamellar bodies (p=0.048), neutrophils (p=0.048), and total protein concentration (p=0.049). The presence of signs of an inflammatory process was associated with greater fetal lung maturity (r=0.33, p=0.046). Statistically significant correlations were found between the number of lamellar bodies and the cerebellum size (r=0.38, p=0.04), femur length (r=0.32, p=0.04), resistance index in the fetal MCA (r=-0.32, p=0.04). Conclusion. Laboratory analysis of the amniotic fluid composition allows the detection of intra-amniotic inflammation and determination of the degree of fetal lung maturity, which is essential information for optimizing obstetric management.

Full Text

Restricted Access

About the authors

Zulfiya S. Khodzhaeva

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Minzdrav of Russia

Email: zkhodjaeva@mail.ru
M.D., Professor, Deputy Director for Research of Obstetrics Instituteof the Institution (Department of Obstetrics)

Ksenia A. Gorina

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Minzdrav of Russia

Email: k_gorina@oparina4.ru
Junior researcher at the Department of Pathology of Pregnancy

Kamilla T. Muminova

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Minzdrav of Russia

Email: k_muminova@oparina4.ru
Ph.D., Junior researcher at the Department of Pathology of Pregnancy

Tatyana Yu. Ivanets

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Minzdrav of Russia

Email: t_ivanets@oparina4.ru
Dr.Med.Sci., Head of the Clinical Diagnostic Laboratory

Yulia V. Kessler

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Minzdrav of Russia

Email: y_kessler@oparina4.ru
Clinical Pathologist at the Biochemistry Laboratory

Tatyana V. Priputnevich

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Minzdrav of Russia

Email: priputl@gmail.com
M.D., Head of the Departament of Microbiology and Clinical Pharmacology

Dmitry M. Belousov

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Minzdrav of Russia

Email: d_belousov@oparina4.ru
Diagnostic Medical Sonographer

References

  1. Orczyk-Pawilowicz M., Jawien E., Deja S., Hirnle L., Zabek A., Mlynarz P Metabolomics of human amniotic fluid and maternal plasma during normal pregnancy. PLoS One. 2016; 11(4): e0152740. https://dx.doi.org/10.1371/ journal.pone.0152740.
  2. Gomez-Lopez N., Romero R., Xu Y., Miller D., Leng Y., Panaitescu B. et al. The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies. Am. J. Reprod. Immunol. 2018; 79(4): e12827. https://dx.doi. org/10.1111/aji.12827.
  3. Underwood M.A., Gilbert W.M., Sherman M.P. Amniotic fluid: Not just fetal urine anymore. J. Perinatol. 2005; 25(5): 341-8. https://dx.doi.org/10.1038/ sj.jp.7211290.
  4. Tarui T., Kim A., Flake A., McClain L., Stratigis J.D., Fried I. et al. Amniotic fluid transcriptomics reflects novel disease mechanisms in fetuses with myelomeningocele. Am. J. Obstet. Gynecol. 2017; 217(5): 587. e1-587. e10. https://dx.doi.org/10.1016/j.ajog.2017.07.022.
  5. Tsuda H., Takahashi Y., Iwagaki S., Kawabata I., Hayakawa H., Kotani T. et al. Intra-amniotic infection increases amniotic lamellar body count before 34 weeks of gestation. J. Matern. Neonatal Med. 2010; 23(10): 1230-6. https://dx.doi. org/10.3109/14767051003615442.
  6. Stimac T., Petrovic O., Krajina R., Prodan M., Bilic-Zulle L. Lamellar body count as a diagnostic test in predicting neonatal respiratory distress syndrome. Croat. Med. J. 2012; 53(3): 234-8. https://dx.doi.org/10.3325/cmj.2012.53.234.
  7. Beamon C., Carlson L., Rambally B., Berchuck S., Gearhart M., Hammett-Stabler C., Strauss R. Predicting neonatal respiratory morbidity by lamellar body count and gestational age. J. Perinat. Med. 2016; 44(6): 677-83. https://dx.doi. org/10.1515/jpm-2014-0310.
  8. Welch R.A., Recanati M.A., Welch K.C., Shaw M.K. Maternal plasma LPCAT 1 mRNA correlates with lamellar body count. J. Perinat. Med. 2018; 46(4): 42931. https://dx.doi.org/10.1515/jpm-2017-0057.
  9. Chaemsaithong P., Romero R., Korzeniewski S.J., Martinez-Varea A., Dong Z., Yoon B.H. et al. A rapid interleukin-6 bedside test for the identification of intra-amniotic inflammation in preterm labor with intact membranes. J. Matern. Neonatal Med. 2016; 29(3): 349-59. https://dx.doi.org/10.3109/14767058.20 15.1006620.
  10. Yoon B.H., Romero R., Park J.Y., Oh K.J., Lee J.H., Conde-Agudelo A., Hong J.S. Antibiotic administration can eradicate intra-amniotic infection or intra-amniotic inflammation in a subset of patients with preterm labor and intact membranes. Am. J. Obstet. Gynecol. 2019; 221(2): 142. e1-142. e22. https:// dx.doi.org/10.1016/j.ajog.2019.03.018.
  11. Volante E., Gramellini D., Moretti S., Kaihura C., Bevilacqua G. Alteration of the amniotic fluid and neonatal outcome. Acta Biomed. 2004; 75(Suppl. 1): 71-5.
  12. Perluigi M., Di Domenico F., Cini C., Coccia R., Giorlandino F.R., Giorlandino M. et al. Proteomic analysis for the study of amniotic fluid protein composition. J. Prenat. Med. 2009; 3(3): 39-41.
  13. Casadei R., D’Ablaing G., Kaplan B.J., Schwinn C.P. A cytologic study of amniotic fluid. Acta Cytol. 1973; 17(4): 289-98.
  14. Dziadosz M., Basch R.S., Young B.K. Human amniotic fluid: A source of stem cells for possible therapeutic use. Am. J. Obstet. Gynecol. 2016; 214(3): 321-7. https://dx.doi.org/10.1016/j.ajog.2015.12.061.
  15. Kim M.J., Romero R., Gervasi M.T., Kim J.S., Yoo W., Lee D.C. et al. Widespread microbial invasion of the chorioamniotic membranes is a consequence and not a cause of intra-amniotic infection. Lab. Investig. 2009; 89(8): 924-36. https:// dx.doi.org/10.1038/labinvest.2009.49.
  16. Gomez-Lopez N., Romero R., Garcia-Flores V., Xu Y., Leng Y., Alhousseini A. et al. Amniotic fluid neutrophils can phagocytize bacteria: A mechanism for microbial killing in the amniotic cavity. Am. J. Reprod. Immunol. 2017; 78(4): 10.1111/ aji.12723. https://dx.doi.org/10.1111/aji.12723.
  17. Welch R.A., Shaw M.K., Welch K.C. Amniotic fluid LPCAT1 mRNA correlates with the lamellar body count. J. Perinat. Med. 2016; 44(5): 531-2. https://dx.doi. org/10.1515/jpm-2015-0008.
  18. Преждевременные роды. Клинические рекомендации (протокол лечения). М.; 2011. [Preterm birth. Clinical recommendations (treatment Protocol). 2011. (in Russian)].
  19. ACOG; Committee on Obstetric Practice. Antenatal corticosteroid therapy for fetal maturation. Obstet. Gynecol. 2017; 130(2): 102-9. https://dx.doi. org/10.1016/S0029-7844(02)02023-9
  20. Mitsiakos G., Kovacs L., Papageorgiou A. Are antenatal steroids beneficial to severely growth restricted fetuses? J. Matern. Neonatal Med. 2013; 26(15): 1496 9. https://dx.doi.org/10.3109/14767058.2013.789852
  21. Ходжаева З.С., Горина К.А. Антенатальная профилактика респираторного дистресс-синдрома плода: взгляд в будущее. Акушерство и гинекология. 2019; 5: 12-8. [Khodzhaeva Z.S., Gorina K.A Antenatal prevention of fetal respiratory distress syndrome: a look into the future. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2019; 5: 12-8. (in Russian)]. https:// dx.doi.org/10.18565/aig.2019.5.12-18
  22. Lu J., Gronowski A.M., Eby C. Lamellar body counts performed on automated hematology analyzers to assess fetal lung maturity. Lab. Med. 2008; 39(7): 419 23. https://dx.doi.org/10.1309/TPM3HYJE475RYMA2
  23. Westover A.J., Moss T.J.M. Effects of intrauterine infection or inflammation on fetal lung development. Clin. Exp. Pharmacol. Physiol. 2012; 39(9): 824-30. https://dx.doi.org/10.1111/j.1440-1681.2012.05742.x

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies