GENOTYPING OF EMBRYOS USING FRAGMENTAL STR ANALYSIS AFTER WHOLE GENOME AMPLIFICATION


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To develop a method for determining the maternal or paternal origin of chromosomal aneuploidies in embryos by performing STR analysis for patients who undergo assisted reproductive technologies (ART) programs. Materials and methods. The development of the method was carried out using biopsy material of the trophectoderm in embryos of 58 couples of patients (116 persons). Preimplantation genetic testing for aneuploidy (PGT-A) was performed using high-throughput sequencing. Determination of the origin of aneuploidy was performed by fragment analysis of STR markers. Results. After After PGT-A, aneuploidy was detected in 67 embryos (41%); euploid embryos were 65 (40%); mosaic forms were found in 28 (17%) embryos. Primers have been developed for the analysis of chromosomes 1, 3, 4. Development of primers for analysis of 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 19, 22 and X chromosomes was performed. The analysis of chromosome 16 (n = 7 embryos), chromosome 19 (n = 5 embryos) and chromosome 22 (n = 8 embryos) showed that this approach can be used to identify both maternal and paternal origin of aneuploidy. Conclusion. A technological possibility of carrying out STR fragment analysis with purpose of genotyping of embryos using various products of whole genome amplification was shown. It makes possible to carry out PGT-A and PGT-M together with embryo genotyping without the need for repeated biopsies. The study parental contribution to the development of embryonic aneuploidy in future will allow to choose the most optimal tactics for managing patients with repeated unsuccessful attempts of ART and past miscarriages.

Full Text

Restricted Access

About the authors

Alexey N. EKIMOV

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_ekimov@oparina4.ru
clinical geneticist of Molecular Genetics Laboratory Moscow, Russia

Natalia V. ALEXANDROVA

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: alexnat1@yandex.ru
M.D., leading researcher Moscow, Russia

Ekaterina S. SHUBINA

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_shubina@oparina4.ru
Head of Genomic Data Analysis Laboratory Moscow, Russia

Olga V. RITCHER

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: o_ritcher@oparina.ru
clinical laboratory diagnostician of Molecular Genetics Laboratory Moscow, Russia

Andrey Yu. GOLTSOV

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: andrey.goltsov@gmail.com
researcher at Molecular Genetics Laboratory Moscow, Russia

Tatiana A. NAZARENKO

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: t_nazarenko@oparina4.ru
Dr. Med. Sci., professor, Head of Institute of Reproductive Medicine Moscow, Russia

References

  1. Faramarzi A., Khalili M.A., Ashourzadeh S. Oocyte morphology and embryo morphokinetics in an intra-cytoplasmic sperm injection programme. Is there a relationship? Zygote. 2017; 25(2):190-6. https://dx.doi.org/10.1017/ S0967199417000041.
  2. El-Danasouri I., Sterzik K., Rinaldi L., Pacchiarotti A., DeSanto M., Selman H. Effect of transferring a morphologically impaired embryo with a good quality embryo on the pregnancy and implantation rates. Eur. Rev. Med. Pharmacol. Sci. 2016; 20(3): 394-8.
  3. Dahdouh E.M., Balayla J., Garcia-Velasco J.A. Comprehensive chromosome screening improves embryo selection: a meta-analysis. Fertil. Steril. 2015; 104(6): 1503-12. https://dx.doi.org/10.1016/j.fertnstert.2015.08.038.
  4. Minasi M.G., Colasante A., Riccio T., Ruberti A., Casciani V., Scarselli F. et al. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum. Reprod. 2016; 31(10): 2245-54. https://dx.doi.org/10.1093/ humrep/dew18.
  5. Бейк Е.П., Сыркашева А.Г., Долгушина Н.В. Эффективность программ вспомогательных репродуктивных технологий у пациенток позднего репродуктивного возраста. Гинекология. 2018; 20(1): 109-12.
  6. Munné S., Alikani M., Ribustello L., Colls P., Martmez-Ortiz P.A., McCulloh D.N. ; Referring Physician Group. Euploidy rates in donor egg cycles significantly differ between fertility centers. Hum. Reprod. 2017; 32(4): 743-9. https://doi. org/10.1093/humrep/dex031.
  7. Rabinowitz M., Ryan A., Gemelos G., Hill M., Baner J., Cinnioglu C. et al. Origins and rates of aneuploidy in human blastomeres. Fertil. Steril. 2012; 97(2): 395-401. https://dx.doi.org/10.1016/j. fertnstert.2011.11.034.
  8. Handyside A.H., Montag M. Multiple meiotic errors caused by predivision of chromatids in women of advanced maternal age undergoing in vitro fertilisation. Eur. J. Hum. Genet. 2012; 20(7): 742-7. https://dx.doi.org/10.1038/ ejhg.2011.272.
  9. Назаренко Т.А. Эндокринные факторы женского и мужского бесплодия. Принципы гормонального лечения. М.: МИА; 2017.
  10. Zhou Z., Ma Y.L., Li Q., Zhang Y., Huang Y.H., Tu Z.H. et al. Clinical application of oligo array-CGH for detecting balanced translocations in preimplantation genetic diagnosis. Int. J. Clin. Exp. Pathol. 2017; 10(7): 7821-35. eCollection 2017.
  11. Daser A., Thangavelu M., Pannell R., Forster A., Sparrow L., Chung G. et al. Interrogation of genomes by molecular copy-number counting (MCC). Nat Methods. 2006; 3(6): 447-53. https://dx.doi.org/10.1038/nmeth880.
  12. Treff N.R., Tao X., Ferry K.M., Su J., Taylor D., Scott R.T. Development and validation of an accurate quantitative real-time polymerase chain reactionbased assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil. Steril. 2012; 97(4): 819-24. 10. https://dx.doi.org/1016/j. fertnstert.2012.01.115.
  13. Fiorentino F., Biricik A., Bono S., Spizzichino L., Cotroneo E., Cottone G. et al. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil. Steril. 2014; 101(5): 1375-82. https://dx.doi.org/10.1016/j.fertnstert.2014.01.051.
  14. Aleksandrova N., Shubina E., Ekimov A., Kodyleva T., Mukosey I., Makarova N., Kulakova E., Levkov L., Trofimov D., Sukhikh G. Comparison of the results of preimplantation genetic screening obtained by a-CGH and NGS methods from the same. Gynecol. Endocrinol. 2016; 32(Suppl. 2): 1-4. https://dx.doi.org/10. 1080/09513590.2016.1232892.
  15. Александрова Н.В., Шубина Е.С., Екимов А.Н., Кодылева Т.А., Мукосей И.С., Макарова Н.П., Кулакова Е.В., Левков Л.А., Барков И.Ю., Трофимов Д.Ю., Сухих Г.Т. Молекулярная биология. 2017; 51(2): 308-13. https://dx.doi.org/10.7868/ S0026898417010025.
  16. Demko Z.P., Simon A.L., McCoy R.C., Petrov D.A., Rabinowitz M. Effects of maternal age on euploidy rates in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphism-based preimplantation genetic screening Fertil. Steril. 2016; 105(5): 1307-13. https://dx.doi. org/10.1016/j.fertnstert.2016.01.025.
  17. McCoy R.C., Demko Z.P., Ryan A., Banjevic M., Hill M., Sigurjonsson S. et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLOS Genet. 2015; 11(10): e1005601. https:// dx.doi.org/10.1371/journal.pgen.1005601.
  18. Fragouli E., Wells D. Aneuploidy in the human blastocyst. Cytogenet. Genome Res. 2011; 133(2-4): 149-59. https://dx.doi.org/10.1159/000323500.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies