Current views on the pathogenesis of fetal growth restriction


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review article analyzes the data available in the modern literature on the actual aspects of the development of fetal growth restriction (FGR). The review includes data from foreign and Russian articles published in Pubmed and eLibrary. Currently, there is no common understanding of the pathogenesis of FGR. Of particular interest are the ways of forming different phenotypes of FGR. The development of FGR and the latter concurrent with preeclampsia (PE) is rooted in impaired trophoblast invasion; the differences are mainly in the degree of impairment. The literature review considers the aspects of the occurrence of FGR, which are associated with the pathology of the second wave of cytotrophoblast invasion, with an impaired vascular wall remodeling process during placental development, as well as the epigenetic mechanisms of FGR development and the features of the transcriptome. A number of epigenetic mechanisms, including DNA methylation processes, various modifications of histones and noncoding RNAs, have been identified in recent years. The scientific literature has published the results of numerous studies of placental microRNAs as potential biomarkers for the diagnosis of early-onset FGR and/or PE, since they can play a role in the pattern of pathophysiological processes in the context of the epigenetic regulators that affect gene expression in placental tissues and are also able to circulate in the maternal bloodstream and to be determined in maternal plasma. Conclusion. The determination of placental microRNAs in maternal blood showed an increase in the concentration of differentially expressed microRNAs in women with severe early-onset FGR and a correlation with the umbilical artery blood flow velocity rate. The modern aspects of the development of FGR are summarized, by analyzing the data available in the literature.

Full Text

Restricted Access

About the authors

Mariya V. Volochaeva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: m_volochaeva@oparina4.ru
PhD, researcher of the 1st Maternity Ward Moscow, Russia

Oleg R. Baev

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: o_baev@oparina4.ru
Dr. Med. Sci., Professor, Head of the 1st Maternity Ward Moscow, Russia

References

  1. Figueras F., Gratacos E. Stage-based approach to the management of fetal growth restriction. Prenat. Diagn. 2014; 34(7): 655-9. https://dx.doi.org/10.1002/pd.4412.
  2. Crovetto F., Crispi F., Scazzocchio E., Mercade I., Meier E., Figueras F, Gratacos E. First-trimester screening for early and late small-for-gestational-age neonates using maternal serum biochemistry, blood pressure and uterine artery Doppler. Ultrasound Obstet. Gynecol. 2014; 43: 34-40. https://dx.doi.org/10.1002/uog.12537.
  3. Александрова Н.В., Баев О.Р. Ранние этапы становления системы мать-плацента-плод. Акушерство и гинекология. 2011; 8: 4-10
  4. Милованов А.П., Кириченко А.К. Цитотрофобластическая инвазия - ключевой механизм развития нормальной и осложненной беременности. Красноярск; 2009. 211с
  5. Harris L.K. Trophoblast-vascular cell interactions in early pregnancy: how to remodel a vessel. Placenta. 2010; 31(Suppl.): S93-8.
  6. Vicovac L., Aplin J.D. Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat. 1996; 156(3): 202-16.
  7. Burton G.J., Woods A.W., Jauniaux E., Kingdom J.C. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009; 30(6): 473-82. https://dx.doi.org/10.1016/j.placenta.2009.02.009.
  8. Schulz E., Gori T., Münzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens. Res. 2011; 34(6): 665-73. https://dx.doi.org/10.1038/hr.2011.39.
  9. Wang S., Kaufman R.J. The impact of the unfolded protein response on human disease. J. Cell Biol. 2012; 197(7): 857-67. https://dx.doi.org/10.1083/jcb.201110131.
  10. Kim D.H., Saetrom P., Snove O., Rossi J.J. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl. Acad. Sci. USA. 2008; 105(42): 16230-5. https://dx.doi.org/10.1073/pnas.0808830105.
  11. Krol J., Loedige I., Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010; 11(9): 597-610. https://dx.doi.org/10.1038/nrg2843.
  12. Luo S.S., Ishibashi O., Ishikawa G., Ishakawa T., Katayama A., Mishima M.R. et al. Human villous trophoblasts express and secrete placenta-specific MicroRNAs into maternal circulation via Exosomes1. Biol. Reprod. 2009; 81(4): 717-29. https://dx.doi.org/10.1095/biolreprod.108.075481.
  13. Liang Y., Ridzon D., Wong L., Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007; 8: 166.
  14. Morales-Prieto D.M., Ospina-Prieto S., Chaiwangyen W., Schoenleben M., Markert U.R. Pregnancy-associated miRNA-clusters. J. Reprod. Immunol. 2013; 97(1): 51-61. https://dx.doi.org/10.1016/j.jri.2012.11.001.
  15. Pineles B.L., Romero R., Montenegro D., Tarca A.L., Han Y.M., Kim Y.M. et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am. J. Obstet. Gynecol. 2007; 196(3): 261. e1-6. https://dx.doi.org/10.1016/j.ajog.2007.01.008.
  16. Higashijima A., Miura K., Mishima H., Kinoshita A., Jo O., Abe S. et al. Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat. Diagn. 2013; 33(3): 214-22. https://dx.doi.org/10.1002/pd.4045.
  17. Mouillet J.F, Chu T., Hubel C.A., Nelson D.M., Parks W.T., Sadovsky Y. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta. 2010; 31(9): 781-4. https://dx.doi.org/10.1016/j.placenta.2010.07.001.
  18. Whitehead C.L., Teh W.T., Walker S.P., Leung C., Larmour L., Tong S. Circulating MicroRNAs in maternal blood as potential biomarkers for fetal hypoxia in-utero. PloS One. 2013; 8(11): e78487. https://dx.doi.org/10.1371/journal.pone.0078487.
  19. Zhang Y., Fei M., Xue G., Zhou Q., Jia Y., Li L. et al. Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease. J. Cell. Mol. Med. 2012; 16(2): 249-59. https://dx.doi.org/10.1111/j.1582-4934.2011.01291.x.
  20. Anton L., Olarerin-George A.O., Schwartz N., Srinivas S., Bastek J., Hogenesch J.B., Elovitz M.A. MiR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. Am. J. Pathol. 2013; 183(5): 1437-45. https://dx.doi.org/10.1016/j.ajpath.2013.07.021.
  21. Zhou X., Li Q., Xu J., Zhang X., Zhang H., Xiang Y. et al. The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-ß signaling. Sci. Rep. 2016; 6: 19910. https://dx.doi.org/10.1038/srep19910.
  22. Zhang M., Muralimanoharan S., Wortman A.C., Mendelson C.R. Primate-specific miR-515 family members inhibit key genes in human trophoblast differentiation and are upregulated in preeclampsia. Proc. Natl. Acad. Sci. USA. 2016; 113(45): E7069-76. https://dx.doi.org/10.1073/pnas.1607849113.
  23. Xie L., Mouillet J.F., Chu T., Parks W.T., Sadovsky E., Knöfler M., Sadovsky Y. C19MC microRNAs regulate the migration of human trophoblasts. Endocrinology. 2014; 155(12): 4975-85. https://dx.doi.org/10.1210/en.2014-1501.
  24. Awamleh Z., Gloor G.B., Han V.K.M. Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: potential impact on gene expression and pathophysiology. BMC Med. Genomics. 2019; 12(1): 91. https://dx.doi.org/10.1186/s12920-019-0548-x.
  25. Leavey K., Benton S.J., Grynspan D., Kingdom J.C., Bainbridge S.A., Cox B.J. Unsupervised placental gene expression profiling identifies clinically relevant subclasses of human preeclampsia. Hypertension. 2016; 68(1): 137-47. https://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07293.
  26. Leavey K., Wilson S., Bainbridge S., Robinson W., Cox B. Epigenetic regulation of placental gene expression in transcriptional subclasses of preeclampsia. Clin. Epigenetics. 2018; 10: 28. https://dx.doi.org/10.1186/s13148-018-0463-6.
  27. Wilson S.L., Leavey K., Cox B.J., Robinson W.P. Mining DNA methylation alterations towards a classification of placental pathologies. Hum. Mol. Genet. 2018; 27(1): 135-46. https://dx.doi.org/10.1093/hmg/ddx391.
  28. Freathy R.M., Mook-Kanamori D.O., Sovio U., Prokopenko I., Timpson N.J., Berry D.J. et al. Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nat. Genet. 2010; 42(5): 430-5. https://dx.doi.org/10.1038/ng.567.
  29. Gremlich S., Damnon F., Reymondin D., Braissant O., Schittny J.C., Baud D. et al. The long noncoding RNA NEAT1 is increased in IUGR placentas, leading to potential new hypotheses of IUGR origin/development. Placenta. 2014; 35(1): 44-9. https://dx.doi.org/10.1016/j.placenta.2013.11.003.
  30. Сидорова И.С., Макаров И.О. Течение и ведение беременности по триместрам. М.: МИА; 2009: 111-5

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies