Search for the causes of reproductive system disorders: a research review


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The continuous development of assisted reproductive technologies (ART) has led to the fact that all types of male and female infertility have now been overcome; however, the effectiveness of using ART methods remains limited and is approximately 30%. What is the reason for this? The paper reviews the world literature sources available in the databases Scopus, Web of Science, MedLine, Cochrane CENTRAL, Cochrane Database of Systematic Reviews (CDSR), Database of Abstracts of Reviews of Effectiveness (DARE), EMBASE, Global Health, CyberLeninka, and Russian Science Citation Index (RSCI) for a comprehensive study of the contribution of various factors to the development of reproductive system disorders. It considers the possible role of genetic and immunological causes, abnormal intra-ovarian steroidogenesis and folliculogenesis, leading to oocyte defects and mitochondrial disorders, which can in turn contribute to impaired early embryogenesis. The analyzed findings are promising, but further investigations of the etiopathogenesis of reproductive system disorders are needed to optimize the algorithm for patient examination and treatment. Particular attention is paid to the most demonstrative clinical model of reproductive system disorders, such as infertility of unknown origin, as an investigation object, when the reproductive system appears anatomically and functionally normal; however, conception does not occur. Conclusion: The information on the role of genetic and immunological causes, abnormal intra-ovarian steroidogenesis and folliculogenesis, leading to oocyte defects and mitochondrial disorders, which can in turn promote impaired early embryogenesis is summarized and analyzed. The algorithm for the diagnosis and treatment of patients with infertility of unknown origin, which is currently relevant from a clinical point of view, is given.

Full Text

Restricted Access

About the authors

Evgeniya V. Kirakosyan

I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University); Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: evgeniya.kirakosyan@mailru
graduate, Department of Obstetrics, Gynecology, Perinatology and Reproductology

Tatyana A. Nazarenko

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Dr. Med. Sci., Professor, Director of the Institute of Reproductive Medicine

Stanislav V. Pavlovich

I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University); Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: s_pavlovich@oparina4.ru
PhD., Academic Secretary; Professor, Department of Obstetrics, Gynecology, Perinatology and Reproductology

References

  1. Назаренко ТА. Вспомогательная репродукция в клинической практике. Разбор клинических случаев с использованием международных и отечественных рекомендаций. М.: МедКом-Про; 2020. 121с.
  2. Borght M.V., Wyns C. Fertility and infertility: definition and epidemiology. Clin. Biochem. 2018; 62: 2-10. https://dx.doi.org/10.1016/j.clinbiochem.2018.03.012.
  3. Guerri G., Maniscalchi T., Barati S., Gerli S., Renzo G.C.D., Morte C.D. et al. Non-syndromic monogenic female infertility. Acta Biomed. 2019; 90(10-S): 68-74. https://dx.doi.org/10.23750/abm.v90i10-S.8763.
  4. Назаренко ТА. Бесплодный брак. Что может и должен сделать врач женской консультации. Российский вестник акушера-гинеколога. 2015; 15(3): 81-5. [Nazarenko T.A. Barren marriage. What can and should be done by female clinic’s physician. Russian Bulletin of Obstetrician-Gynecologist. 2015; 15(3): 81-5. (in Russian)]. https://dx.doi.org/10.17116/rosakush201515381-85.
  5. Министерство здравоохранения Российской Федерации. Женское бесплодие (современные подходы к диагностике и лечению). Клинические рекомендации (протокол лечения). 2019: 33.
  6. Zegers-Hochschild F., Adamson G.D., Dyer S., Racowsky C., de Mouzon J., Sokol R. et al. The International glossary on nfertility and Fertility Care, 2017. Fertil. Steril. 2017; 108(3): 393-406. https://dx.doi.org/10.1016/j.fertnstert.2017.06.005.
  7. Halassy S., Mikhael S., Chorich L.P., Tam K.B., Diamond M.P., Burkholder A.B. et al. Hall establishing the link between genetic variations of estrogen receptor 2 and unexplained infertility. J. Endocr. Soc. 2020; 4(1-S): SUN-738. https://dx.doi.org/10.1210/jendso/bvaa046.855.
  8. Foucaut A.-M., Faure C., Julia C., Czernichow S., Levy R., Dupont C.; ALIFERT Collaborative Group. Sedentary behavior, physical inactivity and body composition in relation to idiopathic infertility among men and women. PLoS One. 2019; 14(4): e0210770. https://dx.doi.org/10.1371/journal.pone.0210770.
  9. Wang R., Danhof N.A., Tjon-Kon-Fat R.I., Eijkemans M.J.C., Bossuyt P.M.M., Mochtar M.H. et al. Interventions for unexplained infertility: a systematic review and network meta-analysis. Cochrane Database Syst. Rev. 2019; (9): CD012692. https://dx.doi.org/10.1002/14651858.CD012692.pub2.
  10. Cariati F., D’Argenio V., Tomaiuolo R. The evolving role of genetic tests in reproductive medicine. J. Transl. Med. 2019; 17(1): 267. https://dx.doi.org/10.1186/s12967-019-2019-8.
  11. Berek J.S., Novak E., Berek D.L. Berek & Novak’s gynecology, 16th ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 2019: 942-1000.
  12. Webber L., Davies M., Anderson R., Bartlett J., Braat D., Cartwright B. et al.; European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum. Reprod. 2016; 31(5): 926-37. https://dx.doi.org/10.1093/humrep/dew027.
  13. Rudnicka E., Kruszewska J., Klicka K., Kowalczyk J., Grymowicz M., Skorska J. et al. Premature ovarian insufficiency - aetiopathology, epidemiology, and diagnostic evaluation. Prz. Menopauzalny. 2018; 17(3): 105-8. https://dx.doi.org/10.5114/pm.2018.78550.
  14. Kamalidehghan B., Habibi M., Afjeh S.S., Shoai M., Alidoost S., Ghale R.A. et al. The importance of small non-coding RNAs in human reproduction: A review article. Appl. Clin. Genet. 2020; 13: 1-11. https://dx.doi.org/10.2147/TACG.S207491.
  15. Chen B., Zhang Z., Sun X., Kuang Y., Mao X., Wang X. et al. Biallelic mutations in PATL2 cause female infertility characterized by oocyte maturation arrest. Am. J. Hum. Genet. 2017; 101(4): 609-15. https://dx.doi.org/10.1016/j.ajhg.2017.08.018.
  16. Tournaye H., Krausz C., Oates R.D. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017; 5(7): 544-53. https://dx.doi.org/10.1016/S2213-8587(16)30040-7.
  17. Guerri G., Maniscalchi T., Barati S., Maria B.G., Del Giudice F., De Berardinis E. et al. Non-syndromic monogenic male infertility. Acta Biomed. 2020; 90(10-S): 62-7. https://dx.doi.org/10.23750/abm.v90i10-S.8762.
  18. Arafat M., Har-Vardi I., Harlev A., Levitas E., Zeadna A., Abofoul-Azab M. et al. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J. Med. Genet. 2017; 54(9): 633-9. https://dx.doi.org/10.1136/jmedgenet-2017-104514.
  19. Sanchez-Saez F., Gomez-H L., Dunne O.M., Gallego-Paramo C., Felipe-Medina N., Sanchez-Martin M. et al. Meiotic chromosome synapsis depends on multivalent SYCE1-SIX6OS1 interactions that are disrupted in cases of human infertility. Sci. Adv. 2020; 6(36): eabb1660. https://dx.doi.org/10.1126/sciadv.abb1660.
  20. Lee A.S., Rusch J., Lima A.C., Usmani A., Huang N., Lepamets M. et al. Rare mutations in the complement regulatory gene CSMD1 are associated with male and female infertility. Nat. Commun. 2019; 10: 4626. https://dx.doi.org/10.1038/s41467-019-12522-w.
  21. Rigau M., Juan D., Valencia A., Rico D. Intronic CNVs and gene expression variation in human populations. PLoS Genet. 2019; 15(1): e1007902. https://dx.doi.org/10.1371/journal.pgen.1007902.
  22. Roberts R.E., Farahani L., Webber L., Jayasena C. Current understanding of hypothalamic amenorrhoea. Ther. Adv. Endocrinol. Metab. 2020; 11: 1-12. https://dx.doi.org/10.1177/2042018820945854.
  23. Li S., Cheng Y., Ye-Shang, Zhou D., Zhang Y., Yin T., Yang J. Chromosomal polymorphisms associated with reproductive outcomes after IVF-ET. J. Assist. Reprod. Genet. 2020; 37(7): 1703-10. https://dx.doi.org/10.1007/s10815-020-01793-8.
  24. Fattet A.-J., Toupance S., Thornton S.N., Monnin N., Gueant J.-L., Benetos A., Koscinski I. Telomere length in granulosa cells and leukocytes: a potential marker of female fertility? A systematic review of the literature. J. Ovarian Res. 2020; 13(1): 96. https://dx.doi.org/10.1186/s13048-020-00702-y.
  25. Arias-Sosa L.A. Understanding the role of telomere dynamics in normal and dysfunctional human reproduction. Reprod. Sci. 2019; 26(1): 6-17. https://dx.doi.org/10.1177/1933719118804409.
  26. Benetos A., Verhulst S., Labat C., Lai T.-P., Girerd N., Toupance S. et al. Telomere length tracking in children and their parents: implications for adult onset diseases. FASEB J. 2019; 33(12): 14248-53. https://dx.doi.org/10.1096/fj.201901275R.
  27. Rocca M.S., Foresta C., Ferlin A. Telomere length: lights and shadows on their role in human reproduction. Biol. Reprod. 2019; 100(2): 305-17. https://dx.doi.org/10.1093/biolre/ioy208.
  28. Kosebent E.G., Uysal F., Ozturk S. Telomere length and telomerase activity during folliculogenesis in mammals. J. Reprod. Dev. 2018; 64(6): 477-84. https://dx.doi.org/10.1262/jrd.2018-076.
  29. Xu X., Chen X., Zhang X., Liu Y., Wang Z., Wang P. et al. Impaired telomere length and telomerase activity in peripheral blood leukocytes and granulosa cells in patients with biochemical primary ovarian insufficiency. Hum. Reprod. 2017; 32(1): 201-7. https://dx.doi.org/10.1093/humrep/dew283.
  30. Lara-Molina E.E., Franasiak J.M., Marin D., Tao X., Diaz-Gimeno P., Florensa M. et al. Cumulus cells have longer telomeres than leukocytes in reproductive age women. Fertil. Steril. 2020; 113(1): 217-23. https://dx.doi.org/10.1016/j.fertnstert.2019.08.089.
  31. Barlow D.H. Telomere length and its assessment for female reproduction. Fertil. Steril. 2020; 113(1): 91-2. https://dx.doi.org/10.1016/j.fertnstert.2019.10.021.
  32. Vasilopoulos E., Fragkiadaki P., Kalliora C., Fragou D., Docea A.O., Vakonaki E. et al. The association of female and male infertility with telomere length (Review). Int. J. Mol. Med. 2019; 44(2): 375-89. https://dx.doi.org/10.3892/ijmm.2019.4225.
  33. Коган И.Ю., Гзгзян А.М., Лесик Е.А. Протоколы стимуляции яичников в циклах ЭКО. Руководство для врачей. М.: ГЭОТАР-Медиа; 2019. 128с. https://dx.doi.org/10.1186/s13578-019-0360-5.
  34. Коган И.Ю. Экстракорпоральное оплодотворение. М.: ГЭОТАР-Медиа; 2021. 368с.
  35. Mobarak H., Heidarpour M., Tsai P.-Sh. J., Rezabakhsh A., Rahbarghazi R., Nouri M., Mahdipour M. Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging. Cell Biosci. 2019; 9: 95. https://dx.doi.org/10.1186/s13578-019-0360-5
  36. Kristensen S.G., Pors S.E., Andersen C.Y. Improving oocyte quality by transfer of autologous mitochondria from fully grown oocytes. Hum. Reprod. 2017; 32(4): 725-32. https://dx.doi.org/10.1093/humrep/dex043
  37. Ishii T., Hibino Y. Mitochondrial manipulation in fertility clinics: regulation and responsibility. Reprod Biomed Soc Online. 2018; 5: 93-109. https://dx.doi.org/10.1016/j.rbms.2018.01.002.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies