Specific features of molecular mechanisms of vaginal secretion in women with decline in sexual function in assisted reproductive technology programs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Women experiencing infertility compared to fertile women are more likely to have sexual dysfunction, including lack of genital arousal, dyspareunia. Sex steroids have a key effect on the morphological and functional condition of the urogen ital tract. Aim. To explore specific features of gene expression of vaginal transcellular secretion factors (AQP3, ESR1, VEGF121, and VEGF165) in ovarian stimulation (OS) for IVF and in natural cycle IFV (NC-IVF) in women with decline in sexual function. Materials and methods. The study included 47 women with decline in sexual function: 24 women underwent OS for IVF, and 23 women underwent treatment for NC-IVF. Female sexual function was assessed using clinical interviews and the FSFI questionnaire. Results. The patients in group 1 (OS for IVF) were younger (p <0.001) and duration of their infertility was shorter (p<0.001), the level of serum anti-Mullerian hormone (AMH) was higher (p<0.001) and the level of follicle-stimulating hormone (FSH) was lower (p<0.001) compared to patients in group 2 (NC-IVF). Group 1 showed higher median values for the female sexual function index (FSFI) in 3 domains “erousal” (p=0.05), “lubrication” (p=0.04), and “desire” (p=0.09). PCR analysis in patients with OS found a high level of ESR1 expression (p=0.012), VEGF121 (p=0.01), a tendency for high AQP3 values (p=0.09) compared to patients in group 2 (NC-IVF); the level of VEGF165 expression was comparable in both groups. High levels of ESR1, VEGF121, AQP3 expression in patients with OS were associated with higher FSFI scores in domains “erousal”, “lubrication”, “desire”. Conclusion. The obtained results allowed to determine some pathogenetic mechanisms of impairment of vaginal secretion, genital sexual arousal, as well as development of dyspareunia.

Full Text

Restricted Access

About the authors

Natalia N. Stenyaeva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: nataliasten@mail.ru
MD, PhD, Senior Researcher of the Department of Andrology and Urology

Alexey M. Krasnyi

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_krasnyi@oparina4.ru
PhD, Head of the Laboratory of Cytology

Dmitry F. Khritinin

I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)

Corresponding Member of the RAS, Dr. Med. Sci., Professor of the Department of Psychiatry and Narcology, Faculty of General Medicine

Anna G. Burduli

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: burdulianna@gmail.com
MD, PhD, Senior Researcher of IVF Department

Alsu A. Sadekova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: sialsad@gmail.com
PhD (Bio), researcher of the Cytology Laboratory

Marina N. Kostava

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

PhD, obstetrician-gynecologist, doctor of the highest category

Elena A. Kalinina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru
Dr. Med. Sci., Professor, Head of the Department of Assisted Technologies for the Treatment of Infertility, Scientific Secretary of the Dissertation Council

References

  1. Wischmann T., Schilling K., Toth B., Rosner S., Strowitzki T., Wohlfarth K., Kentenich H. Sexuality, self-esteem and partnership quality in infertile women and men. Geburtshilfe Frauenheilkd. 2014; 74(8): 759-63. https://dx.doi.org/10.1055/s-0034-1368461.
  2. Galhardo A., Moura-Ramos M., Cunha M., Pinto-Gouveia J. Infertility is a trap: how defeat and trapping are affected by depressive symptoms. Hum. Reprod. 2016; 31(2): 419-26. https://dx.doi.org/10.1093/humrep/dev311.
  3. Peterson B.D., Sejbaek C.S., Pirritano M., Schmidt L. Are there severe depressive symptoms associated with infertility of distress in individuals about related and their partners? Hum. Reprod. 2014; 29(1): 76-82. https://dx.doi.org/10.1093/humrep/det412.
  4. Cizmeli C., Lobel M., Franasiak J., Pastore L.M. Levels and associations among self-esteem, fertility distress, coping, and reaction to potentially being a genetic carrier in women with diminished ovarian reserve. Fertil. Steril. 2013; 99(7): 2037-44. https://dx.doi.org/10.1016/j.fertnstert.2013.02.033.
  5. Keramat A., Masoomi S.Z., Mousavi S.A., Poorolajal J., Shobeiri F., Hazavhei S.M. Quality of life and its related factors in infertile couples. J. Res. Health Sci. 2014; 14(1): 57-63.
  6. Васильченко Г.С., ред. Общая сексопатология. Руководство для врачей. М.: Медицина; 1977: 75-87, 168-75.
  7. Васильченко Г.С., ред. Общая сексопатология. Руководство для врачей. 2-е изд. М.: Медицина; 2005. 510с.
  8. Kazakov D.V., Stewart C.J., Kacerovska D., Leake R., Kreuzberg B., Chudacek Z., Hora M., Michal M. Prostatic-type tissue in the lower female genital tract: a morphologic spectrum, including vaginal tubulosquamous polyp, adenomyomatous hyperplasia of paraurethral Skene glands (female prostate), and ectopic lesion in the vulva. Am. J. Surg. Pathol. 2010; 34(7): 950-5. https://dx.doi.org/10.1097/PAS.0b013e3181e0f371.
  9. Koduri S., Goldhar A., Vonderhaar B. Activation of vascular endothelial growth factor (VEGF) by the ER-a variant, ERA3. Breast Cancer Res. Treat. 2006; 95(1): 37-43. https://dx.doi.org/10.1007/s10549-005-9028-4.
  10. Huang Y.T., Zhou J., Shi S., Xu H.Y., Qu F., Zhang D. et al. Identification of estrogen response element in aquaporin-3 gene that mediates estrogen-induced cell migration and invasion in estrogen receptor-positive breast cancer. Sci. Rep. 2015; 5: 12484. https://dx.doi.ois/10.1038/srep12484.
  11. Nephew K.P., Long X., Osborne E., Burke K.A., Ahluwalia A., Bigsby R.M. Effect of estradiol on estrogen receptor expression in rat uterine cell types. Biol. Reprod. 2000; 62(1): 168-77.
  12. Kim S.O., Oh K.J., Lee H.S., Ahn K., Kim S.W., Park K. Expression of aquaporin water channels in the vagina in premenopausal women. J. Sex. Med. 2011; 8(7): 1925-30. https://dx.doi.org/10.1111/j.1743-6109.2011.02284.x.
  13. Lee H.S., Kim S.O., Ahn K., Park K. All-trans retinoic acid increases aquaporin 3 expression in human vaginal epithelial cells. Sex. Med. 2016; 4(4): e249-54. https://dx.doi.org/10.1016/j.esxm.2016.07.001.
  14. Dvorak H.F., Brown L.F., Detmar M., Dvorak A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 1995; 146(5): 1029-39.
  15. Sondell M., Sundler F., Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur. J. Neurosci. 2000; 12(12): 4243-54. https://dx.doi.org/10.1046/j.0953-816X.2000.01326.x.
  16. Storkebaum E., Lambrechts D., Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays. 2004; 26(9): 943-54. https://dx.doi.org/10.1002/bies.20092.
  17. Zhang Y., Furumura M., Morita E. Distinct signaling pathways confer different vascular responses to VEGF 121 and VEGF 165. Growth Factors. 2008; 26(3): 125-31. https://dx.doi.org/10.1080/08977190802105909.
  18. Reed B.G., Carr B.R. The normal menstrual cycle and the control of ovulation. [Updated 2018 Aug 5]. In: Feingold K.R., Anawalt B., Boyce A., Chrousos G., de Herder W.W., Dhatariya K. et al., eds. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available at: https://www.ncbi.nlm.nih.gov/books/NBK279054/
  19. Ullah K., Rahman T.U., Pan H.T., Guo M.X., Dong X.Y., Liu J. et al. Serum estradiol levels in controlled ovarian stimulation directly affect the endometrium. J. Mol. Endocrinol. 2017; 59(2): 105-19. https://dx.doi.org/10.1530/ JME-17-0036.
  20. Carosso A., Revelli A., Gennarelli G., Canosa S., Cosma S., Borella F. et al. Controlled ovarian stimulation and progesterone supplementation affect vaginal and endometrial microbiota in IVF cycles: a pilot study. J. Assist. Reprod. Genet. 2020; 37(9): 2315-26. https://dx.doi.org/10.1007/s10815-020-01878-4.
  21. Rosen R., Brown C., Heiman J., Leiblum S., Meston C., Shabsigh R. et al. The Female Sexual Function Index (FSFI): a multidimensional selfreport instrument for the assessment of female sexual function. J. Sex Marital Ther. 2000; 26(2): 191-208. https://dx.doi.org/10.1080/009262300278597.
  22. Tanha F.D., Mohseni M., Ghajarzadeh M. Sexual function in women with primary and secondary infertility in comparison with controls. Int. J. Impot. Res. 2014; 26(4): 132-4. https://dx.doi.org/10.1038/ijir.2013.51.
  23. Keskin U., Coksuer H., Gungor S., Ercan C.M., Karasahin K.E., Baser I. Differences in prevalence of sexual dysfunction between primary and secondary infertile women. Fertil. Steril. 2011; 96(5): 1213-7. https://dx.doi.org/10.1016/j.fertnstert.2011.08.007.
  24. Azadzoi K.M., Siroky M.B. Neurologic factors in female sexual function and dysfunction. Korean J. Urol. 2010; 51(7): 443-9. https://dx.doi.org/10.4111/ kju.2010.51.7.443.
  25. Woodard T.L., Diamond M.P. Physiologic measures of sexual function in women: a review. Fertil. Steril. 2009; 92(1): 19-34. https://dx.doi.org/10.1016/ j.fertnstert.2008.04.041.
  26. Li S., Herrera G.G., Tam K.K., Lizarraga J.S., Beedle M.T., Winuthayanon W. Estrogen action in the epithelial cells of the mouse vagina regulates neutrophil infiltration and vaginal tissue integrity. Sci. Rep. 2018; 8(1): 11247. https://dx.doi.org/10.1038/s41598-018-29423-5.
  27. Исламов Р.Р., Валиуллин В.В., Мурашов А.К. Механизмы нейропро-текторного действия эстрогенов, связанные с экспрессией фактора роста эндотелия сосудов. Биологический бюллетень РАН. 2007; 34: 110-9. [Islamov R.R., Valiullin V.V., Murashov A.K. Mechanisms of the neuroprotective action of estrogens associated with the expression of vascular endothelial growth factor. Biology Bulletin. 2007; 34: 110-9]. https://dx.doi.org/10.1134/S1062359007020021.
  28. Apte R.S., Chen D.S., Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019; 176(6): 1248-64.
  29. Giacca M., Zacchigna S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther. 2012; 19: 622-9. https://dx.doi.org/10.1038/gt.2012.17.
  30. Theis V., Theiss C. VEGF - A stimulus for neuronal development and regeneration in the CNS and PNS. Curr. Protein Pept. Sci. 2018; 19(6): 589-97. https://dx.doi.org/10.2174/1389203719666180104113937.
  31. Abir-Awan M., Kitchen P., Salman M.M., Conner M.T., Conner A.C., Bill R.M. Inhibitors of mammalian aquaporin water channels. Int. J. Mol. Sci. 2019; 20(7): 1589. https://dx.doi.org/10.3390/ijms20071589.
  32. Fiorentini D., Zambonin L., Dalla Sega F.V., Hrelia S. Polyphenols as modulators of aquaporin family in health and disease. Oxid. Med. Cell. Longev. 2015; 2015: 196914. https://dx.doi.org/10.1155/2015/196914.
  33. Ribeiro J.C., Alves M.G., Yeste M., Cho Y.S., Calamita G., Oliveira P.F. Aquaporins and (in)fertility: More than just water transport. Biochim. Biophys. Acta Mol. Basis Dis. 2020; 1867(3): 166039. https://dx.doi.org/10.1016/j.bbadis.2020.166039.
  34. Hara-Chikuma M., Satooka H., Watanabe S., Honda T., Miyachi Y., Watanabe T., Verkman A.S. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-kB signalling in keratinocytes and development of psoriasis. Nat. Commun. 2015; 6: 7454. https://dx.doi.org/10.1038/ncomms8454.
  35. Zhu N., Feng X., He C., Gao H., Yang L., Ma Q. et al. Defective macrophage function in aquaporin-3 deficiency. FASEB J. 2011; 25(12): 4233-9. https://dx.doi.org/10.1096/fj.11-182808.
  36. Hara-Chikuma M., Chikuma S., Sugiyama Y., Kabashima K., Verkman A.S., Inoue S., Miyachi Y. Chemokine-dependent T. cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J. Exp. Med. 2012; 209(10): 1743-52. https://dx.doi.org/10.1084/jem.20112398.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies