The role of lipidomic studies in human reproduction and in the outcomes of infertility treatment programs using assisted reproductive technologies


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Lipids and lipophilic trace elements are of increasing interest as potential non-invasive predictive molecules for in vitro fertilization outcomes. Their antioxidant and/or pro-inflammatory activities have an impact on female and male reproductive functions. Since the causes of fertility disorders may be related to metabolic imbalance, metabolomics can be applied to reproductive medicine to identify and quantify low-molecular-weight metabolites in follicular fluid and in the germ cells of couples undergoing assisted reproductive technologies. Studying the effect of lipids on the outcomes of assisted reproductive technologies in order to correct lipid metabolism disorders will help to improve live birth rates. Data from the Russian and foreign articles found in PubMed (http://pubmed. ncbi.nim.nih.gov) and published over the past 5 years were systematically analyzed. The paper presents data from studies investigating the lipidome of follicular fluid, spermatozoa and seminal plasma, blood plasma from couples and the possible prospects for studies in assisted reproductive technology programs. Conclusion: Despite the extent of current investigations, the question of the combined mutual influence of the lipid profile of female and male gametes and blood of patients on the parameters of oogenesis, spermatogenesis, and embryogenesis, and, accordingly, on the outcomes of assisted reproductive technology programs, remains open. Further investigations are needed to study lipidome in order to predict the outcomes of treatment with assisted reproductive technologies and to develop possible interventions to correct the lipidome composition.

Full Text

Restricted Access

About the authors

Luliia A. Fortygina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: yu_fortygina@oparina4.ru
postgraduate student

Natalya P. Makarova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: np_makarova@oparina4.ru
Dr. Bio. Sci., Leading Researcher, Department of IVF named after Prof. BV. Leonov

Oksana S. Nepsha

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: o_nepsha@oparina4.ru
PhD (Bio), Researcher, Department of IVF named after Prof. B.V. Leonov

Nataliya N. Lobanova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: n_lobanova@oparina4.ru
Researcher, Department of IVF named after Prof. BV. Leonov

Elena A. Kalinina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru
Dr. Med. Sci., Professor, Head of the IVF department named after Prof. BV. Leonov

References

  1. Batushansky A., Zacharia A., Shehadeh A., Bruck-Haimson R., Saidemberg D., Kogan N.M. et al. A shift in glycerolipid metabolism defines the follicular fluid of ivf patients with unexplained infertility. Biomolecules. 2020; 10(8): 1135. https://dx.doi.org/10.3390/biom10081135.
  2. Shehadeh A., Bruck-Haimson R., Saidemberg D., Zacharia A., Herzberg S., Ben-Meir A., Moussaieff A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome. FASEB J. 2019; 33(9): 10291-9. https://dx.doi.org/10.1096/fj.201900318RR.
  3. Johnson A.A., Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell. 2019; ; 18(6): e13048. https://dx.doi.org/10.1111/acel.13048.
  4. Zullig T., Trotzmuller M., Kofeler H.C. Lipidomics from sample preparation to data analysis: a primer. Anal. Bioanal. Chem. 2020; 412(10): 2191-209. https://dx.doi.org/10.1007/s00216-019-02241-y.
  5. Revelli A., Delle Piane L., Casano S., Molinari E., Massobrio M., Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 2009; 7(4): 40. https://dx.doi.org/10.1186/1477-7827-7-40.
  6. Zhang X.,, Wang T., Song J., Deng J., Sun Z. Study on follicular fluid metabolomics components at different ages based on lipid metabolism. Reprod. Biol. Endocrinol. 2020; 18(1): 42. https://dx.doi.org/10.1186/s12958-020-00599-8.
  7. Uzbekova S., Bertevello P. S., Dalbies-Tran R., Elis S., Lab as V., Monget P., Teixeira-Gomes A.P. Metabolic exchanges between the oocyte and its environment: focus on lipids. Reprod. Fertil. Dev. 2022; 34(2): 1-26. https://dx.doi.org/10.1071/RD21249.
  8. Babayev E., Duncan F.E. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol. Reprod. 2022; 106(2): 351-65. https://dx.doi.org/10.1093/biolre/ioab241.
  9. Zarezadeh R., Mehdizadeh A., Leroy J.L.M.R., Nouri M., Fayezi S., Darabi M. Action mechanisms of n-3 polyunsaturated fatty acids on the oocyte maturation and developmental competence: Potential advantages and disadvantages. J. Cell. Physiol. 2019; 234(2): 1016-29. https://dx.doi.org/10.1002/jcp.27101.
  10. Бурдули А.Г., Кициловская Н.А., Сухова Ю.В., Ведихина И.А., Иванец Т.Ю., Чаговец В.В., Стародубцева Н.Л., Франкевич В.Е. Фолликулярная жидкость и исходы программвспомогательных репродуктивных технологий (обзор литературы). Гинекология. 2019; 21(6): 36-40.
  11. Ruiz-Sanz J.I., Perez-Ruiz I., Meijide S., Ferrando M., Larreategui Z., Ruiz-Larrea M.B. Lower follicular n-3 polyunsaturated fatty acid levels are associated with a better response to ovarian stimulation. J. Assist. Reprod. Genet. 2019; 36(3): 473-82. https://dx.doi.org/10.1007/s10815-018-1384-1.
  12. Cordeiro F.B., Montani D.A., Pilau E.J., Gozzo F.C., Fraietta R., Turco E.G.L. Ovarian environment aging: follicular fluid lipidomic and related metabolic pathways. J. Assist. Reprod. Genet. 2018; 35(8): 1385-93. https://dx.doi.org/10.1007/s10815-018-1259-5.
  13. Mirabi P., Chaichi M.J., Esmaeilzadeh S., Jorsaraei S.G.A., Bijani A., Ehsani M. Does different BMI influence oocyte and embryo quality by inducing fatty acid in follicular fluid? Taiwan. J. Obstet. Gynecol. 2017; 56(2): 159-64. https://dx.doi.org/10.1016/j.tjog.2016.11.005.
  14. Montani D.A., Braga D.P.A.F., Borges E. Jr, Camargo M., Cordeiro F.B., Pilau E.J. et al. Understanding mechanisms of oocyte development by follicular fluid lipidomics. J. Assist. Reprod. Genet. 2019; 36(5): 1003-11. https://dx.doi.org/10.1007/s10815-019-01428-7.
  15. Luti S., Fiaschi T., Magherini F., Modesti P.A., Piomboni P., Governini L. et al. Relationship between the metabolic and lipid profile in follicular fluid of women undergoing in vitro fertilization. Mol. Reprod. Dev. 2020; 87(9): 986-97. https://dx.doi.org/10.1002/mrd.23415.
  16. Liu Y., Tilleman K., Vlaeminck B., Gervais R., Chouinard P.Y., De Sutter P., Fievez V. The fatty acid composition in follicles is related to the developmental potential of oocytes up to the blastocyst stage: a single-centre cohort study. Reprod. Biol. Endocrinol. 2022; 20(1): 107. https://dx.doi.org/10.1186/s12958-022-00974-7.
  17. Ruebel M.L., Piccolo B.D., Mercer K.E., Pack L., Moutos D., Shankar K., Andres A. Obesity leads to distinct metabolomic signatures in follicular fluid of women undergoing in vitro fertilization. Am. J. Physiol. Endocrinol. Metab. 2019; 316(3): E383-96. https://dx.doi.org/10.1152/ajpendo.00401.2018.
  18. Bou Nemer L., Shi H., Carr B.R., Word R.A., Bukulmez O. Effect of body weight on metabolic hormones and fatty acid metabolism in follicular fluid of women undergoing in vitro fertilization: A pilot study. Reprod. Sci. 2019; 26(3): 404-11. https://dx.doi.org/10.1177/1933719118776787.
  19. Ndnez Calonge R., Guijarro J.A., Andres C., Cortes S., Saladino M., Caballero P., Kireev R. Relationships between lipids levels in blood plasma, follicular fluid and seminal plasma with ovarian response and sperm concentration regardless of age and body mass index. Rev. Int. Androl. 2022; 20(3): 178-88. https://dx.doi.org/10.1016/j.androl.2021.02.004.
  20. Song J., Xiang S., Pang C., Guo J., Sun Z. Metabolomic alternations of follicular fluid of obese women undergoing in-vitro fertilization treatment. Sci. Rep. 2020; 10(1): :5968. https://dx.doi.org/10.1038/s41598-020-62975-z.
  21. Khan R., Jiang X., Hameed U., Shi Q. Role of Lipid metabolism and signaling in mammalian oocyte maturation, quality, and acquisition of competence. Front. Cell Dev. Biol. 2021; 9: 639704. https://dx.doi.org/10.3389/fcell.2021.639704.
  22. da Costa L. do V.T., Cordeiro F.B., Rochetti R., M. Murgu M., D. Zylbersztejn D., Cedenho A. et al. Follicular fluid lipidomics reveals lipid alterations by LH addition during IVF cycles. Metabolomics. 2017; 13(6): 70.
  23. Wang S., Wang J., Jiang Y., Jiang W. Association between blood lipid level and embryo quality during in vitro fertilization. Medicine (Baltimore). 2020; 99(13): e19665. https://dx.doi.org/10.1097/MD.0000000000019665.
  24. Cai W.Y., Luo X., Chen E., Lv H., Fu K., Wu X.K., Xu J. Serum lipid levels and treatment outcomes in women undergoing assisted reproduction: a retrospective cohort study. Front. Endocrinol. (Lausanne). 2021; 12: 633766. https://dx.doi.org/10.3389/fendo.2021.633766.
  25. Wang J., Zheng W., Zhang S., Yan K., Jin M., Hu H. et al. An increase of phosphatidylcholines in follicular fluid implies attenuation of embryo quality on day 3 post-fertilization. BMC Biol. 2021; 19(1): 200. https://dx.doi.org/10.1186/s12915-021-01118-w.
  26. Rivera-Egea R., Garrido N., Sota N., Meseguer M., Remohi J., Dominguez F. Sperm lipidic profiles differ significantly between ejaculates resulting in pregnancy or not following intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 2018; 35(11): 1973-85. https://dx.doi.org/10.1007/s10815-018-1284-4.
  27. Chen S., Wang M., Li L., Wang J., Ma X., Zhang H. et al. High-coverage targeted lipidomics revealed dramatic lipid compositional changes in asthenozoospermic spermatozoa and inverse correlation of ganglioside GM3 with sperm motility. Reprod. Biol. Endocrinol. 2021; 19(1): 105. https://dx.doi.org/10.1186/s12958-021-00792-3.
  28. Mirabi P., Chaichi M.J., Esmaeilzadeh S., AH Jorsaraei S.G., Bijani A., Ehsani M., Hashemi Karooee S.F. The role of fatty acids on ICSI outcomes: a prospective cohort study. Lipids Health Dis. 2017; 16(1): 18. https://dx.doi.org/10.1186/s12944-016-0396-z.
  29. Гусякова О.А., Мурский С.И., Тукманов Г.В., Комарова М.В. Особенности метаболического состава спермальной плазмы при различных морфофункциональных патологиях эякулята. Клиническая лабораторная диагностика. 2019; 64(8): 469-76. https://dx.doi.org/10.18821/0869-2084-2019-64-8-469-476.
  30. Crisostomo L., Videira R.A., Jarak I., Starcevic K., Masek T., Rato L. et al. Diet during early life defines testicular lipid content and sperm quality in adulthood. Am. J. Physiol. Metab. 2020; 319(6): E1061-73. https://dx.doi.org/10.1152/ajpendo.00235.2020.
  31. Iizuka-Hishikawa Y., Hishikawa D., Sasaki J., Takubo K., Goto M., Nagata K. et al. Lysophosphatidic acid acyltransferase 3 tunes the membrane status of germ cells by incorporating docosahexaenoic acid during spermatogenesis. J. Biol. Chem. 2017; 292(29): 12065-76. https://dx.doi.org/10.1074/jbc.M117.791277.
  32. Evans H.C., Dinh T.T.N., Hardcastle M.L., Gilmore A.A., Ugur M.R., Hitit M. et al. Advancing semen evaluation using lipidomics. Front. Vet. Sci. 2021; 8: 601794. https://dx.doi.org/10.3389/fvets.2021.601794.
  33. Furse S., Watkins A.J., Williams H.E.L., Snowden S.G., Chiarugi D., Koulman A. Paternal nutritional programming of lipid metabolism is propagated through sperm and seminal plasma. Metabolomics. 2022; 18(2): 13. https://dx.doi.org/10.1007/s11306-022-01869-9.
  34. Eid N., Morgan H.L., Watkins A.J. Paternal periconception metabolic health and offspring programming. Proc. Nutr. Soc. 2022; 81(2): 119-25. https://dx.doi.org/10.1017/S0029665121003736.
  35. Crisostomo L., Videira R.A., Jarak I., Starcevic K., Masek T., Rato L. et al. Inherited metabolic memory of high-fat diet impairs testicular fatty acid content and sperm parameters. Mol. Nutr. Food Res. 2022; 66(5): e2100680. https://dx.doi.org/10.1002/mnfr.202100680.
  36. Calonge R.N., Kireev R., Guijarro A., Cortes S., Carolina Andres C., Pedro Caballero P. Lipid dysregulation in seminal and follicular fluids could be related with male and female infertility. Endocrinol. Metab. Int. J. 2018; 6(1): 65-71.
  37. Shan S., Xu F., Hirschfeld M., Brenig B. Sperm lipid markers of male fertility in mammals. Int. J. Mol. Sci. 2021; 22(16): 8767. https://dx.doi.org/10.3390/ijms22168767.
  38. Collodel G., Castellini C., Lee J.C., Signorini C. Relevance of fatty acids to sperm maturation and quality. Oxid. Med. Cell. Longev. 2020; 5(5): 7038124. https://dx.doi.org/10.1155/2020/7038124.
  39. Lu J.C., Jing J., Yao Q., Fan K., Wang G.H., Feng R.X. et al. Relationship between lipids levels of serum and seminal plasma and semen parameters in 631 Chinese sub fertile men. PLoS One. 2016; 11(1): ) e014 6304. https://dx.doi.org/10.1371/journal.pone.0146304.
  40. Liu Y., Cheng H., Tiersch T.R. The role of alkalinization-induced Ca2+ influx in sperm motility activation of a viviparous fish Redtail Splitfin (Xenotoca eiseni). Biol. Reprod. 2018; 99(6): 1159-70. https://dx.doi.org/10.1093/biolre/ioy150.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies