Changes in serum lipid profile during the menopausal transition


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: To compare metabolic profiles of women in the early and late phase of menopausal transition. Materials and methods: The study involved 125 women experiencing menopause transition. Baseline evaluation included carbohydrate and lipid metabolism parameters, uric acid, C-reactive protein (CRP), leptin, and adiponectin. The serum lipidome was analyzed by high performance chromatography with tandem mass spectrometry (HPLC-MS). Body composition was measured with dual-energy X-ray absorptiometry. Results: Women in the early and late phase of the menopausal transition had no significant differences in body composition, carbohydrate and lipid metabolism, levels of uric acid, CRP, leptin, and adiponectin levels. However, they had statistically significant differences in the levels of 14 lipids determined by HPLC-MS. Women in the late phase of menopausal transition had higher levels of ceramide Cer(d18:1/22:0), phospholipids OxLPC(24:1(OOOO)), 0xPC(18:0_18:4(Ke,0H)), 0xPC(20:4_14:0(C00H)), PC(18:1 18:1), PC(18:0_20:2), PEt0H(18:0 24:0), PI(18:1_18:2), and sphingomyelin SM(d26:0/16:1). These substances had a positive correlation with FSH, LDL, atherogenicity coefficient, glucose, insulin, HOMA index, glycated hemoglobin, and blood pressure. Conclusion: In women experiencing early and late phase of menopausal transition, HPLC-MS allowed the identification of differences in lipid profiles undetectable by traditional biochemical methods. Changes in lipidome may be an initial step in the pathogenesis of cardiometabolic disorders in women undergoing menopause transition. These findings can be used for further study of various diseases associated with menopause.

Full Text

Restricted Access

About the authors

Veronika I. Komedina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: komedina.veronika@gmail.com
PhD. Student at the Department of Gynecologic Endocrinology

Svetlana V. Yureneva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: syureneva@gmail.com
Dr. Med. Sci., Professor at the Department of Obstetrics and Gynecology of the Department of Vocational Education, Leading Researcher at the Department of Gynecologic Endocrinology

Vitaliy V. Chagovets

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: vvchagovets@gmail.com
Ph.D., Senior Researcher, Laboratory of Proteomics and Metabolomics of Human Reproduction

Natalia L. Starodubtseva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: n_starodubtseva@oparina4.ru
PhD, Head of the Laboratory of Proteomics and Metabolomics of Human Reproduction

References

  1. El Khoudary S.R., Aggarwal B., Beckie T.M., Hodis H.N., Johnson A.E., Langer R.D. et al. Menopause transition and cardiovascular disease risk: implications for timing of early prevention: A Scientific Statement from the American Heart Association. Circulation. 2020; 142(25): 506-32. https://dx.doi.org/10.1161/CIR.0000000000000912.
  2. Юренева С.В., Комедина В.И., Кузнецов С.Ю. Диагностические возможности антропометрических показателей для оценки ожирения у женщин в период менопаузального перехода. Акушерство и гинекология. 2022; 2: 72-9. [Yureneva S.V., Komedina V.I., Kuznetsov S.Yu. Diagnostic accuracy of anthropometric measures for assessing obesity in women during the menopausal transition. Akusherstvo i Ginekologiia/Obstetrics and Gynecology. 2022; 2: 72-9. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.2.72-79.
  3. Thurston R.C., Karvonen-Gutierrez C.A., Derby C.A., El Khoudary S.R., Kravitz H.M., Manson J.E. Menopause versus chronologic aging: their roles in women’s health. Menopause. 2018; 25(8): 849-54. https://doi.org/10.1097/GME.0000000000001143.
  4. Юренева С.В., Комедина В.И., Чаговец В.В., Стародубцева Н.Л. Роль липидов, определяемых методом масс-спектрометрии, в развитии кардиометаболических заболеваний у женщин в период менопаузы. Акушерство и гинекология. 2020; 12: 76-80. https://dx.doi.org/10.18565/aig.2020.12.76-80.
  5. Neeland I.J., Singh S., McGuire D.K., Vega G.L., Roddy T., Reilly D.F. et al. Relation of plasma ceramides to visceral adiposity, insulin resistance and the development of type 2 diabetes mellitus: the Dallas Heart Study. Diabetologia. 2018; 61(12): 2570-9. https://dx.doi.org/10.1007/s00125-018-4720-1.
  6. Gui Y.-K., Li Q., Liu L., Zeng P., Ren R.F., Guo Z.F. et al. Plasma levels of ceramides relate to ischemic stroke risk and clinical severity. Brain Res. Bull. 2020; 158: 122-7. https://dx.doi.org/10.1016/J.BRAINRESBULL.2020.03.009.
  7. Van der Veen J.N., Kennelly J.P., Wan S., Vance J.E., Vance D.E., Jacobs R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017; 1859 (9, Pt B): 1558-72. https://dx.doi.org/10.1016/j.bbamem.2017.04.006.
  8. Messina C., Albano D., Gitto S., Tofanelli L., Bazzocchi A., Ulivieri F.M. et al. Body composition with dual energy X-ray absorptiometry: From basics to new tools. Quant. Imaging Med. Surg. 2020; 10(8): 1687-98. https://dx.doi.org/10.21037/QIMS.2020.03.02.
  9. Tang Q., Li X., Song P., Xu L. Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: developments in research and prospects for the future. Drug Discov. Ther. 2015; 9(6): 380-5. https://dx.doi.org/10.5582/ddt.2015.01207.
  10. Bovolini A., Garcia J., Andrade M.A., Duarte J.A. Metabolic syndrome pathophysiology and redisposing factors. Int. J. Sports Med. 2021; 42(3): 199-214. https://dx.doi.org/10.1055/a-1263-0898.
  11. Choi R.H., Tatum S.M., Symons J.D., Summers S.A., Holland W.L. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nature reviews. Cardiology. 2021;18(10): 701-11. https://dx.doi.org/10.1038/s41569-021-00536-1.
  12. Mantovani A., Bonapace S., Lunardi G., Canali G., Dugo C., Vinco G. et al. Associations between specific plasma ceramides and severity of coronary-artery stenosis assessed by coronary angiography. Diabet. Metab. 2020; 46(2): 150-7. https://dx.doi.org/10.1016/j.diabet.2019.07.006.
  13. Fretts A.M., Jensen P.N., Hoofnagle A., McKnight B., Howard B.V., Umans J. et al. Plasma ceramide species are associated with diabetes risk in participants of the Strong Heart Study. J. Nutr. 2020; 150(5): 1214-22. https://dx.doi.org/10.1093/jn/nxz259.
  14. Wigger L., Cruciani-Guglielmacci C., Nicolas A., Denom J., Fernandez N., Fumeron F. et al. Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep. 2017; 18(9): 2269-79. https://dx.doi.org/10.1016/j.celrep.2017.02.019.
  15. Im S.-S., Park H.Y., Shon J.C., Chung I.-S., Cho H.C., Liu K.-H. et al. Plasma sphingomyelins increase in pre-diabetic Korean men with abdominal obesity. PLoS ONE. 2019; 14: e0213285. https://dx.doi.org/10.1371/journal.pone.0213285.
  16. Kikas P., Chalikias G. Cardiovascular implications of sphingomyelin presence in biological membranes. Eur. Cardiol. Rev. 2018; 13: 42. https://dx.doi.org/10.15420/ecr.2017:20:3.
  17. Bochkov V., Gesslbauer B., Mauerhofer C., Philippova M., Erne P., Oskolkova O.V. Pleiotropic effects of oxidized phospholipids. Free Rad. Biol. Med. 2017; 111: 6-24. https://dx.doi.org/10.1016/j.freeradbiomed.2016.12.034.
  18. Lopez-Lopez A., Godzien J., Soldevilla B., Gradillas A., LopezGonzdlvez A., Lens-Pardo A. et al. Oxidized lipids in the metabolic profiling of neuroendocrine tumors - Analytical challenges and biological implications. J. Chromatogr. A. 2020; 1625: 461233. https://dx.doi.org/10.1016/j.chroma.2020.461233.
  19. Nie J., Yang J., Wei Y., Wei X. The role of oxidized phospholipids in the development of disease. Mol. Aspects Med. 2020; 76: 100909. https://dx.doi.org/10.1016/J.MAM.2020.100909.
  20. Furse S., de Kroon A.I.P.M. Phosphatidylcholine’s functions beyond that of a membrane brick. Mol. Membr. Biol. 2015; 32(4): 117-9. https://dx.doi.org/10.3109/09687688.2015.1066894.
  21. Calzada E., Onguka O., Claypool S.M. Phosphatidylethanolamine metabolism in health and disease. Int. Rev. Cell Mol. Biol. 2016; 321: 29-88. https://dx.doi.org/10.1016/bs.ircmb.2015.10.001.
  22. Llano D.A., Devanarayan V. Serum phosphatidylethanolamine and lysophosphatidylethanolamine levels differentiate Alzheimer’s disease from controls and predict progression from mild cognitive impairment. J. Alzheimers Dis. 2021; 80(1): 311-9. https://dx.doi.org/10.3233/JAD-201420.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies