Vitamins and trace elements in the prevention of infectious diseases in women of reproductive age


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The issue of increasing nonspecific immunity is becoming particularly relevant in the context of the spread of a new coronavirus infection SARS-CoV-2. Thus, there is question of supplementation with vitamins and micronutrients, especially in reproductive-aged women planning pregnancy, due to socio-economic aspects, geographical latitude, dietary habits, and increased needs associated with the epidemiological situation. The deficiency of certain micronutrients in the diet has been found to impair the chemical, structural and regulatory processes in the body, which can negatively affect the state of the immune system. Certain associations have been identified between sufficiency of micronutrients, the severity of the course and development of complications of COVID-19. Severe course of infection is associated with severe deficiency of vitamin D (<10 ng/ml). Vitamin D contributes to changing the macrophage phenotype from pro-inflammatory Th1 to anti-inflammatory Th2, which may reduce the risk of a cytokine storm. There was a statistically significant decrease in the level of inflammatory markers, including ferritin and D-dimer, a decrease in the risks of multiple organ failure, a tendency to reduce the need for ventilation, vascular damage in patients with acute respiratory distress syndrome with parenteral use of high doses of ascorbic acid. The experimental studies have shown that cations Zn2+ inhibit the activity of SARS-coronavirus RNA polymerase by reducing its replication; this fact opens up prospects for the use of Zn2+ as an antiviral agent in the treatment of COVID-19. Vitamin E and selenium have effects that reduce the risk of infection: they increase the number of Tcells, enhance the responses of mitogenic lymphocytes, increase the secretion of IL-2 cytokines, and stimulate the activity of natural killer cells. The causative agent influences beta-carotene which accelerates the immune response of the body by increasing the activity of macrophages. Conclusion. The strategies for the prevention of COVID-19 provide for the intake of vitamin and mineral complexes containing vitamins D, A, E, zinc, selenium. The optimal intake of micronutrients largely determines the protection of a person from the effects of negative environmental factors including biological agents, namely microbes and viruses.

Full Text

Restricted Access

About the authors

Evgenia V. Shikh

I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia

Email: chih@mail.ru
Dr. Med. Sci., Professor, Head of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases Moscow, Russia

Anna A. Makhova

I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia

Email: annabramova@gmail.com
Dr. Med. Sci., Associate Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases Moscow, Russia

Alexey B. Prokofiev

Center for Clinical Pharmacology, Scientific Center for Expert Evaluation of Medicinal Products, Ministry of Health of Russia

Email: prokofyev56@gmail.com
Dr. Med. Sci., Professor, Director of the Center for Clinical Pharmacology of the Scientific Centre for Expert Evaluation of Medicinal Products Moscow, Russia

Anastasiia S. Nazarchuk

I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia

Email: nazarchuk_a_s@student.sechenov.ru
student Moscow, Russia

References

  1. Bailey R.L., West K.P., Black R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015; 66(Suppl. 2): 22-33. https://dx.doi.org/10.1159/000371618.
  2. Ших Е.В., Махова А.А. Эндемичность территории по дефициту микронутриентов как критерий формирования состава базового витаминно-минерального комплекса для периконцепционального периода. Акушерство и гинекология. 2018; 10: 25-32
  3. Lowensohn R.I., Stadler D.D., Naze C. Current concepts of maternal nutrition. Obstet. Gynecol. Surv. 2016; 71(7): 413-26. https://dx.doi.org/10.1097/OGX.0000000000000329.
  4. Bhutta Z.A., Das J.K., Rizvi A., Gaffey M.F., Walker N., Horton S. et al. Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet. 2013; 382(9890): 452-77. https://dx.doi.org/10.1016/S0140-6736(13)60996-4.
  5. Berti C., Biesalski H.K., Gärtner R., Lapillonne A., Pietrzik K., Poston L. et al. Micronutrients in pregnancy: current knowledge and unresolved questions. Clin. Nutr. 2011; 30(6): 689-701. https://dx.doi.org/10.1016/j.clnu.2011.08.004.
  6. Eurosurveillance Editorial Team. Latest updates on COVID-19 from the European Centre for Disease Prevention and Control. Euro Surveill. 2020; 25(6): 2002131. https://dx.doi.org/10.2807/1560-7917.ES.2020.25.6.2002131.
  7. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020; 395(10224): 565-74. https://dx.doi.org/10.1016/S0140-6736(20)30251-8.
  8. https://xn--80aesfpebagmfblc0a.xn--p1ai/ai/doc/872/attach/Bmr_COVID-19_compressed.pdf
  9. Jovic T.H., Ali S.R., Ibrahim N., Jessop Z.M., Tarassoli S.P., Dobbs T.D. et al. Could vitamins help in the fight against COVID-19? Nutrients. 2020; 12(9): 2550. https://dx.doi.org/10.3390/nu12092550.
  10. Chen Y., Li L. SARS-CoV-2: virus dynamics and host response. Lancet Infect. Dis. 2020; 20: 515-6. https://dx.doi.org/10.1016/S1473-3099(20)30235-8.
  11. Dushianthan A., Cusack R., Burgess V.A., Grocott M.P.W., Calder P.C. Immunonutrition for acute respiratory distress syndrome (ARDS) in adults. Cochrane Database Syst. Rev. 2019; (1): CD012041. https://dx.doi.org/10.1002/14651858.CD012041.pub2.
  12. Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020; 109: 102433. https://dx.doi.org/10.1016/j.jaut.2020.102433.
  13. Wastnedge E.A.N., Reynolds R.M., van Boeckel S.R., Stock S.J., Denison F.C., Maybin J.A., Critchley H.O.D. Pregnancy and COVID-19. Physiol. Rev. 2021; 101(1): 303-18. https://dx.doi.org/10.1152/physrev.00024.2020.
  14. Schjenken J.E., Tolosa J.M., Paul J.W., Vicki L., Smith C., Smith R. Mechanisms of maternal immune tolerance during pregnancy. In: Zhang J., ed. Recent Advances in research on the human placenta, London: Intech Open; 2012. https://dx.doi.org/105772/33541.
  15. Tay M.Z., Poh C.M., Renia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 2020: 20(6): 363-74. https://dx.doi.org/10.1038/s41577-020-0311-8.
  16. Silasi M., Cardenas I., Kwon J.Y., Racicot K., Aldo P., Mor G. Viral infections during pregnancy. Am. J. Reprod. Immunol. 2015; 73(3): 199-213. https://dx.doi.org/10.1111/aji.12355.
  17. Brandstadter J.D., Yang Y. Natural killer cell responses to viral infection. J. Innate Immun. 2011: 3(3): 274-9. https://dx.doi.org/10.1159/000324176.
  18. Vanders R.L., Gibson P.G., Murphy V.E., Wark P.A.B. Plasmacytoid dendritic cells and CD8 T cells from pregnant women show altered phenotype and function following H1N1/09 infection. J. Infect. Dis. 2013; 208(7): 1062-70. https://dx.doi.org/10.1093/infdis/jit296.
  19. Hall O.J., Nachbagauer R., Vermillion M.S., Fink A.L., Phuong V., Krammer F., Klein S.L. Progesterone-based contraceptives reduce adaptive immune responses and protection against sequential influenza a virus infections. J. Virol. 2017; 91(8): e02160-16. https://dx.doi.org/10.1128/JVI.02160-16.
  20. Goodnight W.H., Soper D.E. Pneumonia in pregnancy. Crit. Care Med. 2005; 33(10, Suppl.): S390-7. https://dx.doi.org/10.1097/01.CCM.0000182483.24836.66.
  21. Schwartz D.A. An analysis of 38 pregnant women with COVID-19, their newborn infants, andaternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes. Arch. Pathol. Lab. Med. 2020; 144(7): 799805. https://dx.doi.org/10.5858/arpa.2020-0901-SA.
  22. Di Mascio D., Khalil A., Saccone G., Rizzo G., Buca D., Liberati M. et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM. 2020; 2(2):100107. https://dx.doi.org/10.1016/j.ajogmf.2020.100107.
  23. Liu D., Li L., Wu X., Zheng D., Wang J., Yang L., Zheng C. Pregnancy and perinatal outcomes of women W-with coronavirus disease (COVID-19) pneumonia: a preliminary analysis. AJR Am. J. Roentgenol. 2020; 215(1): 127 https://dx.doi.org/10.2214/AJR.20.23072.
  24. Facchetti F., Bugatti M., Drera E., Tripodo C., Sartori E., Cancila V. et al. SARS-CoV2 vertical transmission with adverse effects on the newborn revealed through integrated immunohistochemical, electron microscopy and molecular analyses of placenta. EBioMedicine. 2020; 59: 102951. https://dx.doi.org/10.1016/j.ebiom.2020.102951.
  25. Christakos S., Dhawan P., Verstuyf A., Verlinden L., Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2016; 96(1): 365-408. https://dx.doi.org/10.1152/physrev.00014.2015.
  26. Gorman S., Buckley A.G., Ling K.M., Berry L.J., Fear V.S., Stick S.M. et al. Vitamin D supplementation of initially vitamin D- deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiol. Rep. 2017; 5(15): e13371. https://dx.doi.org/10.14814/phy2.13371.
  27. Jeffery L.E., Burke F., Mura M., Zheng Y., Qureshi O.S., Hewison M. et al. 1, 25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 2009: 183(9): 5458-67. https://dx.doi.org/10.4049/jimmunol.0803217.
  28. DAvolio A., Avataneo V., Manca A., Cusato J., De Nicolo A., Lucchini R. et al. 25-hydroxyvitamin d concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients. 2020; 12(5): 1359. https://dx.doi.org/10.3390/nu12051359.
  29. Kara M., Ekiz T., Ricci V., Kara Ö., Chang K.-V., Özgakar L. ‘Scientific Strabismus’ or two related pandemics: coronavirus disease and vitamin D deficiency. Br. J. Nutr. 2020; 124(7): 736-41. https://dx.doi.org/10.1017/S0007114520001749.
  30. Daneshkhah A., Eshein A., Subramanian H., Roy H.K., Backman V. The role of vitamin d in suppressing cytokine storm in COVID-19 patients and associated mortality. MedRxiv preprint. April 2020. https://dx.doi.org/10.1101/2020.04. 08.20058578.
  31. Lau F.H., Majumder R., Torabi R., Saeg F., Hoffman R., Cirillo J.D., Greiffenstein P. Vitamin D insufficiency is prevalent in severe COVID-19. MedRxiv preprint. April 2020. https://dx.doi.org/10.1101/2020.04.24.20075838.
  32. Panagiotou G., Tee S.A., Ihsan Y., Athar W., Marchitelli G., Kelly D. et al. Low serum 25- hydroxyvitamin D (25[OH]D) levels in patients hospitalised with COVID-19 are associated with greater disease severity. Clin. Endocrinol. (Oxford). 2020; 93(4): 508-11. https://dx.doi.org/10.1111/cen.14276.
  33. Zhou Y.F., Luo B.A., Qin L.L. The association between vitamin D deficiency and community-acquired pneumonia: a meta-analysis of observational studies. Medicine (Baltimore). 2019; 98(38): e17252. https://dx.doi.org/10.1097/MD.0000000000017252.
  34. Lee J.I., Burckart G.J. Nuclear factor kappa B: important transcription factor and therapeutic target. J. Clin. Pharmacol. 1998; 38(11): 981-93. https://dx.doi.org/10.1177/009127009803801101
  35. Barnett N., Zhao Z., Koyama T., Janz D.R., Wang C.Y., May A.K. et al. Vitamin D deficiency and risk of acute lung injury in severe sepsis and severe trauma: a case-control study. Ann. Intensive Care. 2014; 4(1): 5. https://dx.doi.org/10.1186/2110-5820-4-5.
  36. Ших Е.В., Махова А.А. Витаминно-минеральный комплекс при беременности. М.: ГЭОТАР-Медиа; 2016.
  37. Shakoor H., Feehan J., Al Dhaheri A.S., Ali H.I., Platat C., Ismail L.C. et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas. 2021; 143: 1-9. https://dx.doi.org/10.1016/j.maturitas.2020.08.003.
  38. Hiedra R., Lo K.B., Elbashabsheh M., Gul F., Wright R.M., Albano J. et al. The use of IV vitamin C for patients with COVID-19: a case series. Exp. Rev. Anti Infect. Ther. 2020; 18(12): 1259-61. https://dx.doi.org/10.1080/14787210.2020.1794819.
  39. Khan H.M.W., Parikh N., Megala S.M., Predeteanu G.S. Unusual early recovery of a critical COVID-19 patient after administration of intravenous vitamin C. Am. J. Case Rep. 2020; 21: e925521. https://dx.doi.org/10.12659/AJCR.925521.
  40. Cheng R.Z. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med. Drug Discov. 2020; 5: 100028. https://dx.doi.org/10.1016/j.medidd.2020.100028.
  41. https://mosgorzdrav.ru/ru-RU/magic/default/download/10614.html
  42. Krebs N.F. Update on zinc deficiency and excess in clinical pediatric practice. Ann. Nutr. Metab. 2013;62(Suppl. 1): 19-29. https://dx.doi.org/10.1159/000348261.
  43. Skalny A.V., Rink L., Ajsuvakova O.P., Aschner M., Gritsenko V.A., Alekseenko S.I. et al. Zinc and respiratory tract infections: perspectives for COVID-19 (Review). Int. J. Mol. Med. 2020; 46(1): 17-26. https://dx.doi.org/10.3892/ijmm.2020.4575.
  44. Razzaque M.S. COVID-19 pandemic: can maintaining optimal zinc balance enhance host resistance? Tohoku J. Exp. Med. 2020; 251(3): 175-81. https://dx.doi.org/10.1620/tjem.251.175.
  45. Singh M., Das R.R. Zinc for the common cold. Cochrane Database Syst. Rev. 2013; (6): CD001364. https://dx.doi.org/10.1002/14651858.CD001364.pub4.
  46. Zhang J., Taylor E.W., Bennett K., Saad R., Rayman M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr. 2020; 111(6): 1297-9. https://dx.doi.org/10.1093/ajcn/nqaa095.
  47. Wu D., Meydani S.N. Vitamin E, immune function, and protection against infection. In: Webe P., Birringer M., Blumberg J.B., Eggersdorfer M., Frank J., eds. Vitamin E in human health. Humana Precc; 2019: 371-84.
  48. Новикова И.А. Железо и иммунный ответ (лекция). Проблемы здоровья и экологии. 2011; 4: 42-8. Доступно по: https://cyberleninka.ru/article/n/zhelezo-i-immunnyy-otvet-lektsiya
  49. Pavord S., Daru J., Prasannan N., Robinson S., Stanworth S., Girling J.; BSH Committee. UK guidelines on the management of iron deficiency in pregnancy. Br. J. Haematol. 2020; 188(6): 819-30. https://dx.doi.org/10.1111/bjh.16221.
  50. Auerbach M., Abernathy J., Juul S., Short V., Derman R. Prevalence of iron deficiency in first trimester, nonanemic pregnant women. J. Matern. Fetal Neonatal Med. 2021; 34(6): 1002-5. https://dx.doi.org/10.1080/ 14767058.2019.1619690. https://www.uspreventiveservicestaskforce.org/Page/Document/ RecommendationStatementFinal/iron-deficiency-anemia-in-pregnant-women-screening-and-supplementation Accessed on March 27, 2019. Spencer S.P., Wilhelm C., Yang Q., Hall J.A., Bouladoux N., Boyd A. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science. 2014; 343(6169): 432-7. https://dx.doi.org/10.1126/science.1247606. World Health Organization Guideline: Vitamin A supplementation in postpartum women.Geneva: WHO; 2011. Available at: http://www.who.int/nutrition/ publications/micronutrients/guidelines/vas_postpartum/en/Accessed April 06 2015.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies