PLACENTAL MOSAICISM IN PREGNANCIES AT HIGH RISK FOR TRISOMY 16 ACCORDING TO GENOME-WIDE DNA-BASED NONINVASIVE PRENATAL SCREENING FOR ANEUPLOIDIES


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: High-sensitivity noninvasive prenatal DNA screening (NIPS) for aneuploidies can detect the risk of fetal aneuploidies in chromosomes 13, 18, and 21, as well as in sex chromosomes from a pregnant woman’s plasma. Genome-wide NIPS makes it possible to study not only individual chromosomes, but also a complete human chromosome set and to identify both pathology in the fetus itself and mosaic aneuploidies in placental tissues. Case report: The paper describes a clinical case of a 42-year-old patient with confined placental mosaicism who has a high risk for trisomy 16, as evidenced by NIPS. A cytogenetic study after a chorionic biopsy showed the presence of a marker chromosome. A fetal amniotic fluid examination showed a normal female karyotype. A girl weighing 2340g with a normal female karyotype was born at 40 weeks 2 days of gestation. Postpartum placental examination using the FISH method revealed trisomy 16 in 100% of the examined cells. Conclusion: This case illustrates that NIPS can detect not only the presence of fetal aneuploidies, but also mosaic placental aneuploidies. In this connection, the management strategy for pregnancy should be determined using results of an additional examination. To avoid false positive results, one should perform confirmatory diagnosis after NIPS, by applying amniocentesis rather than chorionic biopsy.

Full Text

Restricted Access

About the authors

Ilya Yu. BARKOV

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: i_barkov@oparina4.ru
PhD, Head of the Laboratory of Prenatal DNA Screening Moscow, Russia

Jekaterina SHUBINA

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: e_shubina@oparina4.ru
PhD (Bio), Head of the Laboratory of Genomic Data Analysis Moscow, Russia

Lyudmila V. KIM

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: kimika@list.ru
PhD, obstetrician-gynecologist, Department of Pregnancy Loss Prevention and Therapy Moscow, Russia

Anna S. BOLSHAKOVA

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_bolshakova@oparina4.ru
geneticist, Department of Clinical Genetics Moscow, Russia

Dmitry Yu. TROFIMOV

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: d_trofimov@oparina4.ru
Dr. Bio. Sci., Professor of the RAS, Corresponding member of the RAS, Director of the Institute of Reproductive Genetics Moscow, Russia

Andrey Yu. GOLTSOV

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_goltsov@oparina4.ru
Researcher, Molecular Genetics Laboratory Moscow, Russia

Igor O. SADELOV

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_sadelov@oparina4.ru
geneticist, Laboratory of Genomic Data Analysis Moscow, Russia

Nane G. PARSADANYAN

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: nnnpars@mail.ru
PhD, obstetrician-gynecologist, Department of Pregnancy Loss Prevention and Therapy Moscow, Russia

Yulia S. BULATOVA

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: yu.bulatova@mail.ru
PhD, obstetrician-gynecologist, Department of Pregnancy Loss Prevention and Therapy Moscow, Russia

Nana K. TETRUASHVILI

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: tetrauly@mail.ru
Dr. Med. Sci., Head of the Department of Pregnancy Loss Prevention and Therapy Moscow, Russia

References

  1. Rose N.C., Barrie E.S., Malinowski J., Jenkins G.P., McClain M.R., LaGrave D., Leung M.L.; ACMG Professional Practice and Guidelines Committee. Systematic evidence-based review: The application of noninvasive prenatal screening using cell-free DNA in general-risk pregnancies. Genet. Med. 2022; 24(7): 1379-91. https://dx.doi.org/10.1016/j.gim.2022.03.019. https://dx.doi.org/10.21518/2079-701X-2021-13-138-143.
  2. Калашникова Е.А., Глотов А.С., Андреева Е.Н., Барков И.Ю., Бобровник Г.Ю., Дубровина Е.В., Жученко Л.А. Современное значение неинвазивного пренатального исследования внеклеточной ДНК плода в крови матери и перспективы его применения в системе массового скрининга беременных в Российской Федерации. Журнал акушерства и женских болезней. 2021; 70(1): 19-50. https://dx.doi.org/10.17816/JOWD56573.
  3. Alberry M., Maddocks D., Jones M., Abdel Hadi M., Abdel-Fattah S., Avent N., Soothill P.W. Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat. Diagn. 2007; 27(5): 415-8. https://dx.doi.org/10.1002/pd.1700.
  4. Gregg A.R., Skotko B.G., Benkendorf J.L., Monaghan K.G., BajajK., Best R.G. et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet. Med. 2016; 18(10): 1056-65. https://dx.doi.org/10.1038/gim.2016.97.
  5. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins - Obstetrics; Committee on Genetics; Society for Maternal-Fetal Medicine. Screening for fetal chromosomal abnormalities: ACOG Practice Bulletin, Number 226. Obstet. Gynecol. 2020; 136(4): e48-e69. https://dx.doi.org/10.1097/AOG.0000000000004084.
  6. Савельева Г.М., Сухих Г.Т., Серов В.Н., Радзинский В.Е., ред. Акушерство. Национальное руководство. 2-е изд. М.: ГЭОТАР-Медиа; 2018. 1088с.
  7. Сухих Г.Т., Тетруашвили Н.К., Ким Л.В., Трофимов Д.Ю., Барков И.Ю., Шубина Е.С., Парсаданян Н.Г., Федорова Н.И., Гольцов А.Ю. Неинвазивный пренатальный ДНК-скрининг методом высокопроизводительного секвенирования у беременных с привычным выкидышем. Акушерство и гинекология. 2018; 8: 48-55. https://dx.doi.org/10.18565/aig.2018.8.48-55.
  8. Benn P. Trisomy 16 and trisomy 16 Mosaicism: a review. Am. J. Med. Genet. 1998; 79(2): 121-33.
  9. Yong P.J., Barrett I.J., Kalousek D.K., Robinson W.P. Clinical aspects, prenatal diagnosis, and pathogenesis of trisomy 16 mosaicism. J. Med. Genet. 2003; 40(3):175-82. https://dx.doi.org/10.1136/jmg.40.3.175.
  10. McKinlay Gardner R.J., Amor D.J. Chromosome abnormalities and genetic counseling. Oxford University Press; 2018: 479.
  11. Del Gaudio D., Shinawi M., Astbury C., Tayeh M.K., Deak K.L., Raca G.; ACMG Laboratory Quality Assurance Committee. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2020; 22(7): 1133-41. https://dx.doi.org/10.1038/s41436-020-0782-9.
  12. Sparks T.N., Thao K., Norton M.E. Mosaic trisomy 16: what are the obstetric and long-term childhood outcomes? Genet. Med. 2017; 19(10): 1164-70. https://dx.doi.org/10.1038/gim.2017.23.
  13. Grati F.R., Ferreira J., Benn P., Izzi C., Verdi F., Vercellotti E. et al. Outcomes in pregnancies with a confined placental mosaicism and implications for prenatal screening using cell-free DNA. Genet. Med. 2020; 22(2): 309-16. https://dx.doi.org/10.1038/s41436-019-0630-y.
  14. Kalousek D.K., Vekemans M. Confined placental mosaicism. J. Med. Genet. 1996; 33(7): 529-33. https://dx.doi.org/10.1136/jmg.33.7.529.
  15. Scott F., Bonifacio M., Sandow R., Ellis K., Smet M.E., McLennan A. Rare autosomal trisomies: Important and not so rare. Prenat. Diagn. 2018; 38(10): 765-71. https://dx.doi.org/10.1002/pd.5325.
  16. Wapner R.J. Genetics of stillbirth. Clin. Obstet. Gynecol. 2010; 53(3): 628-34. https://dx.doi.org/10.1097/GRF.0b013e3181ee2793.
  17. Wolstenholme J., Rooney D.E., Davison E.V. Confined placental mosaicism, IUGR, and adverse pregnancy outcome: a controlled retrospective U.K. collaborative survey. Prenat. Diagn. 1994; 14(5): 345-61. https://dx.doi.org/10.1002/pd.1970140505.
  18. Kalousek D.K. The effect of confined placental mosaicism on development of the human aneuploid conceptus. Birth Defects Orig. Artic. Ser. 1993; 29(1): 39-51.
  19. Сивик А.А., Тетруашвили Н.К. Плацентарный мозаицизм и осложнения беременности. Медицинский совет. 2021; 13: 138-43. https://dx.doi.org/10.21518/2079-701X-2021-13-138-143.
  20. Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am. J. Hum. Genet. 1991; 49(5): 995-1013.
  21. Brnndum-Nielsen K., Mikkelsen M. A 10-year survey, 1980-1990, of prenatally diagnosed small supernumerary marker chromosomes, identified by FISH analysis. Outcome and follow-up of 14 cases diagnosed in a series of 12,699 prenatal samples. Prenat. Diagn. 1995; 15(7): 615-9. https://dx.doi.org/10.1002/pd.1970150705.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies