Cardiac pathology in cases of monozygotic twins with chromosome 22 deletion syndrome (22q11DS)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The publication presents the Russian Federation’s first clinical case of prenatal detection of concordant cardiac pathology: common truncus arteriosus in monochorionic diamniotic twin fetuses at 20-21 weeks’ gestation. Evaluation of ultrasound markers for syndrome pathology and a genetic study of placental tissue in this case could diagnose chromosome 22 deletion syndrome (22q11DS). The literature review gives prenatal echographic criteria for determining a high risk of 22q11DS in fetuses with congenital heart diseases that are characteristic of both singleton and multiple pregnancies and analyzes in detail all published cases of prenatal and postnatal detection of chromosome 22q11 deletion in monozygotic twins. It analyzes literature sources on cardiac pathology in 22q11DS: it investigates in detail the rate and pattern of cardiovascular anomalies, the features of the course of the postoperative period, and long-term outcomes in patients with 22q11DS. Conclusion: The awareness of clinical specialists about the prenatal manifestations of chromosome 22q11 deletion and the use of the proposed diagnostic algorithm should ensure the earliest possible detection of this syndrome pathology in fetuses and comprehensive counseling to form a reproductive prognosis for a married couple.

Full Text

Restricted Access

About the authors

Tamara A. Yarygina

A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of Russia

Email: tayarygina@bakulev.ru
MD, PhD, specialist of ultrasound diagnostics, researcher at the Perinatal Cardiology Center

Rena M. Gasanova

A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of Russia; Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: rmgasanova@bakulev.ru
MD, PhD, Head of the Perinatal Cardiology Center

Anna S. Bolshakova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: genetic20i4@yandex.ru
Geneticist at the Department of Clinical Genetics, Institute of Reproductive Genetics

Olga V. Marzoeva

A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of Russia

Email: ovmarzoeva@bakulev.ru
MD, PhD, Doctor of Ultrasound Diagnostics, Researcher at the Perinatal Cardiology Center

Elena V. Sypchenko

A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of Russia

Email: evsypchenko@bakulev.ru
MD, PhD, Doctor of Ultrasound Diagnostics at the Perinatal Cardiology Center

Alexander I. Gus

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_gus@oparina4.ru
Dr. Med. Sci., Professor, Chief Researcher at of the Department of Ultrasound and Functional Diagnostics

References

  1. Goldmuntz E. 22q11.2 deletion syndrome and congenital heart disease. Am. J. Med. Genet. C. Semin. Med. Genet. 2020; 184(1): 64-72. https://dx.doi.org/10.1002/ajmg.c.31774.
  2. Sullivan K.E. Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Immunol. Rev. 2019; 287: 186-201. https://dx.doi.org/10.1111/imr.12701.
  3. Cirillo A., Lioncino M., Maratea A., Passariello A., Fusco A., Fratta F., Russo M.G. Clinical manifestations of 22q11. 2 deletion syndrome. Heart Fail. Clin. 2022; 18(1): 155-64. https://dx.doi.org/10.1016/j.hfc.2021.07.009.
  4. Fernandez L., Nevado J., Santos F., Heine-Suner D., Martinez-Glez V., Garcia-Minaur S. et al. A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review. BMC Med. Genet. 2009; 10: 48. https://dx.doi.org/10.1186/1471-2350-10-48.
  5. Bravo-Valenzuela N.J., Peixoto A.B., AraujoJUnior E. Prenatal diagnosis of congenital heart disease: a review of current knowledge. Indian Heart J. 2018; 70(1): 150-64. https://dx.doi.org/10.1016/j.ihj.2017.12.005.
  6. Badenas C., Rodriguez-Revenga L., Morales C., Mediano C., Plaja A., Perez-Iribarne M.M. et al. Assessment of QF-PCR as the first approach in prenatal diagnosis. J. Mol. Diagn. 2010; 12(6): 828-34. https://dx.doi.org/10.2353/jmoldx.2010.090224.
  7. Campbell I.M., Sheppard S.E., Crowley T.B., McGinn D.E., Bailey A., McGinn M.J. et al. What is new with 22q? An update from the 22q and You Center at the Children's Hospital of Philadelphia. Am. J. Med. Genet. A. 2018; 176(10): 205869. https://dx.doi.org/10.1002/ajmg.a.40637.
  8. Besseau-Ayasse J., Violle-Poirsier C., Bazin A., Gruchy N., Moncla A., Girard F. et al. A French collaborative survey of 272 fetuses with 22q11.2 deletion: ultrasound findings, fetal autopsies and pregnancy outcomes. Prenat. Diagn. 2014; 34(5): 424-30. https://dx.doi.org/10.1002/pd.4321.
  9. Тузанкина И.А., Дерябина С.С., Власова Е.В., Волков М.А. Семейный случай синдрома Ди Джорджи (синдрома делеции 22q11.2). Медицинская иммунология. 2017; 19(1): 95-100. [Tuzankina I.A., Deryabina S.S., Vlasova E.V., Bolkov M.A. Familial case of chromosome 22q11.2 deletion syndrome. Medical Immunology (Russia). 2017; 19(1): 95-100. (in Russian)]. https://dx.doi.org/10.15789/1563-0625-2017-1-95-100.
  10. Fryer A. Monozygotic twins with 22q11 deletion and discordant phenotypes. J. Med. Genet. 1996; 33(2): 173. https://dx.doi.org/10.1136/jmg.33.2.173
  11. McDonald-McGinn D.M., Zackai E.H. Genetic counseling for the 22q11.2 deletion. Dev. Disabil. Res. Rev. 2008; 14(1): 69-74. https://dx.doi.org/10.1002/ddrr.10.
  12. Намазова-Варанова Л.С., Гинтер О.В., Полунина Т.А., Давыдова И.В., Савостьянов К.В., Пушков А.А., Журкова Н.В., Мосьпан Т.Я. Синдром делеции 22q11.2: симптомы, диагностика, лечение. Вопросы современной педиатрии. 2016; 15(6): 590-5. https://dx.doi.org/10.15690/vsp.v15i6.1656.
  13. Karbarz M. Consequences of 22q11.2 microdeletion on the genome, individual and population levels. Genes (Basel). 2020; 11(9): 977. https://dx.doi.org/10.3390/genes11090977.
  14. Sivrikoz T.S., Basaran S., Has R., Karaman B., Kalelioglu I.H., Kirgiz M. et al. Prenatal sonographic and cytogenetic/molecular findings of 22q11.2 microdeletion syndrome in 48 confirmed cases in a single tertiary center. Arch. Gynecol. Obstet. 2022; 305(2): 323-42. https://dx.doi.org/10.1007/s00404-021-06125-4.
  15. Favre E., Leleu A., Peyroux E., Baudouin J.Y., Franck N., Demily C. Exploratory case study of monozygotic twins with 22q11.2DS provides further clues to circumscribe neurocognitive markers of psychotic symptoms. Neuroimage Clin. 2019; 24: 101987. https://dx.doi.org/10.1016/j.nicl.2019.101987.
  16. Alsoufi B., McCracken C., Shashidharan S., Deshpande S., Kanter K., Kogon B. The impact of 22q11.2 deletion syndrome on surgical repair outcomes of conotruncal cardiac anomalies. Ann. Thorac. Surg. 2017; 104(5): 1597-1604. https://dx.doi.org/10.1016/j.athoracsur.2017.04.019.
  17. Kauw D., Woudstra O.I., van Engelen K., Meijboom F.J., Mulder B.J.M., Schuuring M.J., Bouma B.J. 22q11.2 deletion syndrome is associated with increased mortality in adults with tetralogy of Fallot and pulmonary atresia with ventricular septal defect. Int. J. Cardiol. 2020; 306: 56-60. https://dx.doi.org/10.1016/j.ijcard.2020.02.064.
  18. De Backer J., Callewaert B., Muino Mosquera L. Genetics in congenital heart disease. Are we ready for it? Rev. Esp. Cardiol. (Engl Ed). 2020; 73(11): 937-47. https://dx.doi.org/10.1016/j.rec.2020.05.019.
  19. Бурякова С.И., Медведев М.В., Замятина А.И. Мультицентровые исследования Пренатальная прицельная диагностика синдрома Ди Джорджи (22q11. 2). Пренатальная диагностика. 2019; 18(4): 377-82. [Buryakova S.I., Medvedev M.V., Zamyatina A.I. Multicenter studies Prenatal targeted diagnosis of DiGeorge syndrome (22q11.2). Prenatal Diagnosis. 2019; 18(4): 377-82. (in Russian)]. https://dx.doi.org/10.21516/2413-1458-2019-18-4-377-382.
  20. Bataeva R., Bellsham-Revell H., Zidere V., Allan L.D. Reliability of fetal thymus measurement in prediction of 22q11.2 deletion: a retrospective study using four-dimensional spatiotemporal image correlation volumes. Ultrasound Obstet. Gynecol. 2013; 41(2): 172-6. https://dx.doi.org/10.1002/uog.11194.
  21. Battistoni G.I., Delli Carpini G., Colaneri M., Montironi R., Gelzoni G., Giannella L. et al. Initial validation of the diagnostic performance of Thymic-Thoracic Ratio as a marker of conotruncal abnormalities and for prediction of surgical prognosis in fetuses without 22q11.2 deletion. J. Matern. Fetal Neonatal Med. 2020 Aug 30; 1-7. https://dx.doi.org/10.1080/14767058.2020.1808618.
  22. Monteiro M., Aires T., Pimentel K., Pedrosa K., Lima S., Aquino M. et al. Ultrasonographic evaluation of the fetal thymic-thoracic ratio and its association with conotruncal heart defects. J. Gynecol. Obstet. Hum. Reprod. 2022; 51(2): 102281. https://dx.doi.org/10.1016/j.jogoh.2021.102281.
  23. Vigneswaran T.V., Kametas N.A., Zinevich Y., Bataeva R., Allan L.D., Zidere V. Assessment of cardiac angle in fetuses with congenital heart disease at risk of 22q11.2 deletion. Ultrasound Obstet Gynecol. 2015; 46(6): 695-9. https://dx.doi.org/10.1002/uog.14832.
  24. Gamez F., De Leon-Luis J., Pintado P., Perez R., Robinson J.N., Antolin E. et al. Fetal thymus size in uncomplicated twin and singleton pregnancies. Ultrasound Obstet. Gynecol. 2010; 36(3): 302-7. https://dx.doi.org/10.1002/uog.7578.
  25. Gijtenbeek M., Shirzada M.R., Ten Harkel A.D.J., Oepkes D., Haak M.C. Congenital heart defects in monochorionic twins: A systematic review and meta-analysis. J. Clin. Med. 2019; 8(6): 902. https://dx.doi.org/10.3390/jcm8060902.
  26. Костюков К. В., Сак ало В.А., Гладкова К. А., Бокерия Е.Л. Состояние сердечно-сосудистой системы плода и новорожденного при фетофетальном трансфузионном синдроме. Акушерство и гинекология. 2020; 9: 82-7. https://dx.doi.org/10.18565/aig.2020.9.82-87.
  27. Li L., He Z., Huang X., Lin S., Wu J., Huang L. et al. Chromosomal abnormalities detected by karyotyping and microarray analysis in twins with structural anomalies. Ultrasound Obstet. Gynecol. 2020; 55(4): 502-9. https://dx.doi.org/10.1002/uog.20287.
  28. Zhang Y., Huang L., Huang X., He Z., Lin S., Wang Y. et al. Chromosomal aberrations and CNVs in twin fetuses with cardiovascular anomalies: Comparison between monochorionic diamniotic and dichorionic diamniotic twins. Prenat. Diagn. 2018; 38(5): 318-27. https://dx.doi.org/10.1002/pd.5238.
  29. Goodship J., Cross I., Scambler P., Burn J. Monozygotic twins with chromosome 22q11 deletion and discordant phenotype. J. Med. Genet. 1995; 32(9): 746-8. https://dx.doi.org/10.1136/jmg.32.9.746.
  30. Yamagishi H., Ishii C., Maeda J., Kojima Y., Matsuoka R., Kimura M. et al. Phenotypic discordance in monozygotic twins with 22q11.2 deletion. Am. J. Med. Genet. 1998; 78(4): 319-321.
  31. Vincent M.C., Heitz F., Tricoire J., Bourrouillou G., Kuhlein E., Rolland M., Calvas P. 22q11 deletion in DGS/VCFS monozygotic twins with discordant phenotypes. Genet. Couns. 1999; 10(1): 43-9.
  32. Hillebrand G., Siebert R., Simeoni E., Santer R. DiGeorge syndrome with discordant phenotype in monozygotic twins. J. Med. Genet. 2000; 37(9): E23. https://dx.doi.org/10.1136/jmg.37.9.e23.
  33. Lu J.H., Chung M.Y., Hwang B., Chien H.P. Monozygotic twins with chromosome 22q11 microdeletion and discordant phenotypes in cardiovascular patterning. Pediatr. Cardiol. 2001; 22(3): 260-3. https://dx.doi.org/10.1007/s002460010219.
  34. Kadar K. Conotruncalis szivfejlodesi rendellenessegekben igazolt 22q11 microdeletio [22q11 deletion in conotruncal anomalies]. Orv. Hetil. 2005; 146(8): 363-6.
  35. Halder A., Jain M., Chaudhary I., Varma B. Chromosome 22q11.2 microdeletion in monozygotic twins with discordant phenotype and deletion size. Mol. Cytogenet. 2012; 5(1) :13. https://dx.doi.org/10.1186/1755-8166-5-13.
  36. Российское общество акушеров-гинекологов (РОАГ), Ассоциация анестезиологов-реаниматологов (ААР), Ассоциация акушерских анестезиологов-реаниматологов (АААР). Клинические рекомендации. Многоплодная беременность. М.; 2021. 74c. Available at: https://mosgorzdrav.ru/ru-RU/science/default/download/860.html
  37. Orphanet. Truncus arteriosus; Version 5.36.0. 2020. Available at: http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=3384 Accessed 07.03.2022.
  38. Mas C., Delatycki M.B., Weintraub R.G. Persistent truncus arteriosus in monozygotic twins: case report and literature review. Am. J. Med. Genet. 1999; 82(2): 146-8. https://dx.doi.org/10.1002/(sici)1096-8628(19990115)82:2<146::aid-ajmg9>3.0.co;2-p.
  39. Lang M.J., Aughton D.J., Riggs T.W., Milad M.P., Biesecker L.G. Dizygotic twins concordant for truncus arteriosus. Clin. Genet. 1991; 39(1): 75-9. https://dx.doi.org/10.1111/j.1399-0004.1991.tb02989.x.
  40. Benesova D., Sikl H. A rare concordant malformation in monochoriate twins; persistent common arterial trunk. J. Pathol. Bacteriol. 1954; 67(2): 367-70. https://dx.doi.org/10.1002/path.1700670210.
  41. Hazekamp M.G., Barron D.J., Dangel J., Homfray T., Jongbloed M.R.M., Voges I.; ESC Scientific Document Group. Consensus document on optimal management of patients with common arterial trunk. Eur. J. Cardiothorac. Surg. 2021; 60(1): 7-33. https://dx.doi.org/10.1093/ejcts/ezaa423.
  42. Новикова И. В., Хурс О. М., Демидович Т. В., Требка Е.Г., Венчиков а Н.А. Конотрункальные дефекты и аномалии дуги аорты у плодов с синдромом микроделеции 22q11. 2. Пренатальная диагностика. 2020; 19(3): 203-9. https://dx.doi.org/10.21516/2413-1458-2020-19-3-203-209.
  43. Дерябина С.С., Черемохин Д.А., Тузанкина И.А., Болков М.А., Шинвари Х. Ретроспективный анализ случаев первичных иммунодефицитов у детей с врожденными пороками сердца. Российский иммунологический журнал. 2020; 23(4): 505-14. https://dx.doi.org/10.46235/1028-7221-492-ARA.
  44. Ярыгина Т.А., Гасанова Р.М., Леонова Е.И., Марзоева О.В., Сыпченко Е.В., Талолина О.В., Гус А.И. Внедрение мультипланарной нейросонографии при комплексном обследовании плодов с врожденными пороками сердца: первый российский опыт. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. Сердечно-сосудистые заболевания. 2021; 22(2): 231-8. https://dx.doi.org/10.24022/1810-0694-2021-22-2-231-238.
  45. Ярыгина Т.А., Гасанова Р.М., Леонова Е.И., Марзоева О.В., Сыпченко Е.В., Гус А.И. Пренатальное выявление соматической патологии, осложняющей состояние новорожденных с врожденными пороками сердца. Детские болезни сердца и сосудов. 2021; 18(4): 269-80. https://dx.doi.org/10.24022/1810-0686-2021-18-4-269-280.
  46. Owen M.J., Doherty J.L. What can we learn from the high rates of schizophrenia in people with 22q11.2 deletion syndrome? World Psychiatry. 2016; 15(1): 23-5. https://dx.doi.org/10.1002/wps.20274.
  47. Tang S.X., Gur R.E. Longitudinal perspectives on the psychosis spectrum in 22q11.2 deletion syndrome. Am. J. Med. Genet. A. 2018; 176(10): 2192-202. https://dx.doi.org/10.1002/ajmg.a.38500.
  48. Schneider M., Schaer M., Mutlu A.K., Menghetti S., Glaser B., Debbane M., Eliez S. Clinical and cognitive risk factors for psychotic symptoms in 22q11.2 deletion syndrome: a transversal and longitudinal approach. Eur. Child Adolesc. Psychiatry. 2014; 23(6): 425-36. https://dx.doi.org/10.1007/s00787-013-0469-8.
  49. Zhu X., Li J., Ru T., Wang Y., Xu Y., Yang Y. et al. Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing. Prenat. Diagn. 2016; 36(4): 321-7. https://dx.doi.org/10.1002/pd.4782.
  50. Connor J.A., Hinton R.B., Miller E.M., Sund K.L., Ruschman J.G., Ware S.M. Genetic testing practices in infants with congenital heart disease. Congenit. Heart Dis. 2014; 9(2): 158-67. https://dx.doi.org/10.1111/chd.12112.
  51. Nagy O., Szakszon K., Biro B.O., Mogyorosy G., Nagy D., Nagy B. et al. Copy number variants detection by microarray and multiplex ligation-dependent probe amplification in congenital heart diseases. J. Biotechnol. 2019; 299: 86-95. https://dx.doi.org/10.1016/j.jbiotec.2019.04.025.
  52. Levy B., Wapner R. Prenatal diagnosis by chromosomal microarray analysis. Fertil. Steril. 2018; 109(2): 201-12. https://dx.doi.org/10.1016/j.fertnstert.2018.01.005.
  53. Wapner R.J., Martin C.L., Levy B., Ballif B.C., Eng C.M., Zachary J.M. et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 2012; 367(23): 2175-84. https://dx.doi.org/10.1056/NEJMoa1203382.
  54. Stosic M., Levy B., Wapner R. The use of chromosomal microarray analysis in prenatal diagnosis. Obstet. Gynecol. Clin. North Am. 2018; 45(1): 55-68. https://dx.doi.org/10.1016/j.ogc.2017.10.002.
  55. American College of Obstetricians and Gynecologists Committee on Genetics. Committee Opinion No. 581: the use of chromosomal microarray analysis in prenatal diagnosis. Obstet. Gynecol. 2013; 122(6): 1374-7. https://dx.doi.org/10.1097/01.AOG.0000438962.16108.d1.
  56. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 88, December 2007. Invasive prenatal testing for aneuploidy. Obstet. Gynecol. 2007; 110(6): 1459-67. https://dx.doi.org/10.1097/01.AOG.0000291570.63450.44.
  57. Practice Bulletin No. 162: Prenatal diagnostic testing for genetic disorders. Obstet. Gynecol. 2016; 127(5): e108-22. https://dx.doi.org/10.1097/AOG.0000000000001405.
  58. Wu X.L., Li R., Fu F., Pan M., Han J., Yang X. et al. Chromosome microarray analysis in the investigation of children with congenital heart disease. BMC Pediatr. 2017; 17(1): 117. https://dx.doi.org/10.1186/s12887-017-0863-3.
  59. Shefi S., Raviv G., Rienstein S., Barkai G., Aviram-Goldring A., Levron J. Fish based preimplantation genetic diagnosis to prevent DiGeorge syndrome. J. Assist. Reprod. Genet. 2009; 26(7): 411-3. https://dx.doi.org/10.1007/s10815-009-9334-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies