Artificial intelligence in reproductive medicine: ethical and clinical aspects


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The introduction of artificial intelligence (AI) systems in medicine is one of the most important current trends in global healthcare. AI technologies can substantially update a diagnostic system and the design of new drugs and improve the quality of healthcare, by simultaneously reducing cost. Despite the obvious advantages of applying AI-based algorithms, there are a number of limitations in the implementation of these programs in healthcare. Among these problems, there is an ethical challenge in AI, as well as responsibility for programmed decisionmaking. Another important issue of the safe use of AI is the black box principle, when determining causal relationships between data, how the system has actually arrived at a derived conclusion cannot be determined exactly. At the moment, the major goal of AI studies should be to improve software accuracy. Conclusion: The review considers the main areas of AI application, different machine learning techniques, ethical restrictions, and prospects for introducing these programs into clinical practice, including those used in assisted reproductive technologies.

Full Text

Restricted Access

About the authors

Yulia S. Drapkina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: yu_drapkina@oparina4.ru
PhD, Researcher, Department of IVF named after Professor BV. Leonov

Elena A. Kalinina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru
Dr. Med. Sci., Professor, Head of the Department of IVF named after Professor BV. Leonov

Natalya P. Makarova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: np_makarova@oparina4.ru
Dr. Bio. Sci., Leading Researcher, Department of IVF named after Professor BV. Leonov

Kirill S. Milchakov

I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia

PhD, Associate Professor

Vladimir E. Frankevich

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: v_frankevich@oparina4.ru
Dr. Sci. (Physical and Mathematical), Head of the Department of Systems Biology in Reproduction

References

  1. Lamb D.J., Niederberger C.S. Artificial intelligence in medicine and male infertility. World J. Urol. 1993; 11(2): 129-36. https://dx.doi.org/10.1007/BF00182040.
  2. Hamet P., Tremblay J. Artificial intelligence in medicine. Metabolism. 2017; 69: S36-40.
  3. Ившин А.А., Багаудин Т.З., Гусев А.В. Искусственный интеллект на страже репродуктивного здоровья. Акушерство и гинекология. 2021; 5: 17-24. https://dx.doi.org/10.18565/aig.2021.5.17-24.
  4. Gore J.C. Artificial intelligence in medical imaging. Magn. Reson. Imaging. 2020; 68: A1-4. https://dx.doi.org/10.1016/j.mri.2019.12.006.
  5. Ranjini K., Suruliandi A., Raja S.P. Machine learning techniques for assisted reproductive technology: a review. J. Circuit. Syst. Comput. 2020; 29(11): 2030010. https://dx.doi.org/10.1142/S021812662030010X.
  6. Wang R., Pan W., Jin L., Li Y., Geng Y., Gao C. et al. Artificial intelligence in reproductive medicine. Reproduction. 2019; 158(4): R139-54. https://dx.doi.org/10.1530/REP-18-0523.
  7. Barnett-Itzhaki Z., Elbaz M., Butterman R., Amar D., Amitay M., Racowsky C. et al. Machine learning vs. classic statistics for the prediction of IVF outcomes. J. Assist. Reprod. Genet. 2020; 37(10): 2405-12. https://dx.doi.org/10.1007/s10815-020-01908-1.
  8. Sidey-Gibbons Sidey-Gibbons C.J. Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 2019; 19(1): 64. https://dx.doi.org/10.1186/s12874-019-0681-4.
  9. Saeedi P., Yee D., Au J., Havelock J. Automatic identification of human blastocyst components via texture. IEEE Trans. Biomed. Eng. 2017; 64(12): 2968-78. https://dx.doi.org/10.1109/TBME.2017.2759665.
  10. VerMilyea M., Hall J.M.M., Diakiw S.M., Johnston A., Nguyen T., Perugini D. et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum. Reprod. 2020; 35(4): 770-84. https://dx.doi.org/10.1093/humrep/deaa013.
  11. Hajirasouliha I., Elemento O. Precision medicine and artificial intelligence: overview and relevance to reproductive medicine. Fertil. Steril. 2020; 114(5): 908-13. https://dx.doi.org/10.1016/j.fertnstert.2020.09.156.
  12. Carrasco B., Arroyo G., Gil Y., Gomez M.J., Rodriguez I., Barri P.N. et al. Selecting embryos with the highest implantation potential using data mining and decision tree based on classical embryo morphology and morphokinetics. J. Assist. Reprod. Genet. 2017; 34(8): 983-90. https://dx.doi.org/10.1007/s10815-017-0955-x.
  13. Liao S., Pan W., Dai W., Jin L., Huang G., Wang R. et al. Development of a dynamic diagnosis grading system for infertility using machine learning. JAMA Netw. Open. 2020; 3(11): e2023654.
  14. Filho E.S., Noble J.A., Poli M., Griffiths T., Emerson G., Wells D. A method for semi-automatic grading of human blastocyst microscope images. Hum. Reprod. 2012; 27(9): 2641-8. https://dx.doi.org/10.1093/humrep/des219.
  15. Uyar A., Bener A., Ciray H.N. Predictive modeling of implantation outcome in an in vitro fertilization setting. Med. Decis. Making. 2015; 35(6): 714-25. https://dx.doi.org/10.1177/0272989X14535984.
  16. Khan A., Gould S., Salzmann M. Automated monitoring of human embryonic cells up to the 5-cell stage in time-lapse microscopy images. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). IEEE; 2015: 389-93.
  17. Miyagi Y., Habara T., Hirata R., Hayashi N. Feasibility of deep learning for predicting live birth from a blastocyst image in patients classified by age. Reprod. Med. Biol. 2019; 18(2): 190-203. 1 https://dx.doi.org/0.1002/rmb2.12266.
  18. Keskinbora K.H. Medical ethics considerations on artificial intelligence. J. Clin. Neurosci. 2019; 64: 277-82. https://dx.doi.org/10.1016/j.jocn.2019.03.001.
  19. Организация объединенных наций по вопросам образования науки и культуры (ЮНЕСКО). Рекомендация об этических аспектах искусственного интеллекта. Генеральная конференция, 41-я сессия, Париж, 2021.
  20. Национальная стратегия развития искусственного интеллекта на период до 2030 года. Утверждена указом Президента Российской Федерации № 490 от 10 октября 2019 года «О развитии искусственного интеллекта в Российской Федерации».
  21. I Международный форум «Этика искусственного интеллекта (ИИ): начало доверия». Кодекс этики ИИ. 26 октября 2021г.
  22. Российская Федерация. Федеральный закон № 123-ФЗ «О проведении эксперимента по установлению специального регулирования в целях создания необходимых условий для разработки и внедрения технологий искусственного интеллекта в субъекте Российской Федерации - городе федерального значения Москве и внесении изменений в статьи 6 и 10 Федерального закона "О персональных данных”».
  23. Федеральное агентство по техническому регулированию и метрологии. Национальный стандарт Российской Федерации ГОСТ Р. - 2020. Системы искусственного интеллекта. Системы искусственного интеллекта в клинической медицине. Часть 1. Клинические испытания. М.: Стандартинформ; 2020.
  24. Хохлов А.Л., Белоусов Д.Ю. Этические аспекты применения программного обеспечения с технологией искусственного интеллекта. Качественная клиническая практика. 2021; 1: 70-84. https://dx.doi.org/10.37489/2588-0519-2021-1-70-84.
  25. Карпов О.Э., Пензин О.В., Веселова О.В. Организация и регуляция взаимодействия искусственного интеллекта с врачом и пациентом. Вестник Национального меди ко-хирургического Центра им. Н.И. Пирогова. 2020; 15(2): 155-60. https://dx.doi.org/10.25881/BPNMSC.2020.73.34.027.
  26. DeGregory K.W., Kuiper P., DeSilvio T., Pleuss J.D., Miller R., Roginski J.W. et al. A review of machine learning in obesity. Obes. Rev. 2018; 19(5): 668-85. https://dx.doi.org/10.1111/obr.12667.
  27. Гусев А.В., Морозов С.П., Кутичев В.А., Новицкий Р.Э. Нормативноправовое регулирование программного обеспечения для здравоохранения, созданного с применением технологий искусственного интеллекта, в Российской Федерации. Медицинские технологии. Оценка и выбор. 2021; 43(1): 36-45. https://dx.doi.org/10.17116/medtech20214301136.
  28. Гаврилов Э.Л., Хоманов К.Э., Короткова А.В., Аслибекян Н.О., Шевченко Е.А. Актуальные направления развития справочно-информационных он-лайн приложений для врачей. Вестник Национального медико-хирургического Центра им. Н.И. Пирогова. 2017; 12(1): 83-7.
  29. Schuh J.C.L., Funk K.A. Compilation of international standards and regulatory guidance documents for evaluation of biomaterials, medical devices, and 3-D printed and regenerative medicine products. Toxicol. Pathol. 2019; 47(3): 344-57. https://dx.doi.org/10.1177/0192623318804121.
  30. Keane P.A., Topol E.J. With an eye to AI and autonomous diagnosis. NP J. Digit. Med. 2018; 1: 40. https://dx.doi.org/10.1038/s41746-018-0048-y.
  31. Wolff J., Pauling J., Keck A., Baum bach J. The economic impact of artificial intelligence in health care: A Systematic review J. Med. Internet. Res. 2020; 22(2): e 16 8 66. https://dx.doi.org/10.2196/16866.
  32. Takshi S. Unexpected inequality: disparate-impact from artificial intelligence in healthcare decisions. J. Law Health. 2021; 34(2): 215-51.
  33. Aristidou A., Jena R., Topol E.J. Bridging the chasm between AI and clinical implementation. Lancet. 2022; 399(10325): 620. https://dx.doi.org/10.1016/S0140-6736(22)00235-5.
  34. Handelman G.S., Kok H.K., Chandra R. V., Razavi A.H., Huang S., Brooks M. et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. Am. J. Roentgenol. 2019; 212(1): 38-43. https://dx.doi.org/10.2214/AJR.18.20224.
  35. Cimadomo D., Marconetto A., Innocenti F., Trio S., Chiappetta V., Soscia D. et al. O-101. Elucidation of blastocyst collapse and its consequences generated by artificial intelligence: A comprehensive analysis of 1943 embryos from 643 couples. Hum. Reprod. 2022; 37 (Suppl.1). https://dx.doi.org/10.1093/humrep/deac105.124.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies