Whole exome sequencing in couples with unexplained infertility (pilot study)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim: To conduct a pilot study of whole exome sequencing in couples with unexplained infertility. Materials and methods: Whole exome sequencing was performed using DNA from peripheral blood samples obtained from six married couples (women and men). The samples were purposefully selected in the group of unexplained infertility on the basis of clinical and anamnestic findings, laboratory and instrumental parameters, and the results of using assisted reproductive technologies. Assessment of clinical significance (pathogenicity) of the identified variants was based on the American College of Medical Genetics and Genomics (ACMG) guidance for the interpretation of sequence variants and the recommendations of the Russian Society of Medical Geneticists for interpretation of the obtained data using next-generation sequencing. Results: Whole exome sequencing in 6 married couples with unexplained infertility showed no pathogenic/likely pathogenic variants related to patients phenotype, as well as incidental (secondary) findings according to ACMG list of genes. Conclusion: Whole exome sequencing in the most typical patients with unexplained infertility found no variants, which are known to be associated with infertility.

Full Text

Restricted Access

About the authors

Evgeniya V. Kirakosyan

I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University); Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: evgeniya.kirakosyan@mail.ru
Ph.D. student, Department of Obstetrics, Gynecology, Perinatology and Reproductology

Ekaterina A. Pomerantseva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e.pomerantseva@gmail.com
Ph.D., geneticist, Department of Clinical Genetics, Institute of Reproductive Genetics

Stanislav V. Pavlovich

I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University); Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: s_pavlovich@oparina4.ru
Ph.D., Academic Secretary; Professor, Department of Obstetrics, Gynecology, Perinatology and Reproductology

References

  1. Practice Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org. Evidence-based treatments for couples with unexplained infertility: a guideline. Fertil. Steril. 2020; 113(2): 305-22. https://dx.doi.org/10.1016/j.fertnstert.2019.10.014.
  2. ACOG Committee. Infertility workup for the women’s health specialist: ACOG Committee Opinion, Number 781. Obstet Gynecol. 2019; 133(6): e377-e384. https://dx.doi.org/10.1097/AOG.0000000000003271.
  3. Киракосян Е.В., Назаренко Т.А., Бачурин А.В., Павлович С.В. Клиническая характеристика и эмбриологические показатели программ экстракорпорального оплодотворения у женщин с бесплодием неясного генеза. Акушерство и гинекология. 2022; 5: 83-90. https://dx.doi.org/10.18565/aig.2022.5.83-90.
  4. Duffy J.M.N., Adamson G.D., Benson E., Bhattacharya S., Bofill M., Brian K. et al. Top 10 priorities for future infertility research: an international consensus development study. Hum. Reprod. 2020; 35(12): 2715-24. https://dx.doi.org/10.1093/humrep/deaa242.
  5. Бачурин А.В., Киракосян Е.В., Назаренко Т.А., Павлович С.В. Анализ эмбриологического этапа программ экстракорпорального оплодотворения у пациентов с бесплодием неясного генеза. Акушерство и гинекология. 2022; 9: 81-6. https://dx.doi.org/10.18565/aig.2022.9.81-86.
  6. Sfakianoudis K., Maziotis E., Karantzali E., Kokkini G., Grigoriadis S., Pantou A. et al. Molecular drivers of developmental arrest in the human preimplantation embryo: a systematic review and critical analysis leading to mapping future research. Int. J. Mol. Sci. 2021; 22(15): 8353. https://dx.doi.org/10.3390/ijms22158353.
  7. Jelin A.C., Vora N. Whole exome sequencing: applications in prenatal genetics. Obstet. Gynecol. Clin. North Am. 2018; 45(1): 69-81. https://dx.doi.org/10.1016/j.ogc.2017.10.003.
  8. Salfati E.L., Spencer E.G., Topol S.E., Muse E.D., Rueda M., Lucas J.R. et al. Re-analysis of whole-exome sequencing data uncovers novel diagnostic variants and improves molecular diagnostic yields for sudden death and idiopathic diseases. Genome Med. 2019; 11(1): 83. https://dx.doi.org/10.1186/s13073-019-0702-2.
  9. Суспицын Е.Н., Тюрин В.И., Имянитов Е.Н., Соколенко А.П. Полноэкзомное секвенирование: принципы и диагностические возможности. Педиатр. 2016; 7(4): 142-6. https://dx.doi.org/10.17816/PED74142-146.
  10. Gorcenco S., Ilinca A., Almasoudi W., Kafantari E., Lindgren A.G., Puschmann A. New generation genetic testing entering the clinic. Parkinsonism Relat. Disord. 2020; 73: 72-84. https://dx.doi.org/10.1016/j.parkreldis.2020.02.015.
  11. Chen B., Zhang Z., Sun X., Kuang Y., Mao X., Wang X. et al. Biallelic mutations in PATL2 cause female infertility characterized by oocyte maturation arrest. Am. J. Hum. Genet. 2017; 101(4): 609-15. https://dx.doi.org/10.1016/j.ajhg.2017.08.018.
  12. Sang Q., LiB., Kuang Y., Wang X., Zhang Z., Chen B. et al. Homozygous Mutations in WEE2 Cause Fertilization Failure and Female Infertility. Am. J. Hum. Genet. 2018; 102(4): 649-57. https://dx.doi.org/10.1016/j.ajhg.2018.02.015.
  13. Miller D.T., Lee K., Chung W.K., Gordon A.S., Herman G.E., Klein T.E. et al. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021; 23(8): 1381-90. https://dx.doi.org/10.1038/s41436-021-01172-3.
  14. Miller D.T., Lee K., Chung W.K., Gordon A.S., Herman G.E., Klein T.E. et al. Correction to: ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021; 23(8): 1582-4. https://dx.doi.org/10.1038/s41436-021-01278-8.
  15. Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А., Афанасьев А.А., Заклязьминская Е.В., Ребриков Д.В., Савостьянов К.В., Глотов А.С., Костарева А.А., Павлов А.Е., Голубенко М.В., Поляков А.В., Куцев С.И. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019; 18(2): 3-23. https://dx.doi.org/10.25557/2073-7998.2019.02.3-23.
  16. Rehm H.L., Bale S.J., Bayrak-Toydemir P., Berg J.S., Brown K.K., Deignan J.L. et al. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 2013; 15(9): 733-47. https://dx.doi.org/10.1038/gim.2013.92.
  17. Ensembl Variant Effect Predictor (VEP). Available at: https://www.ensembl.org/info/docs/tools/vep/index.html
  18. gnomAD - Genome Aggregation Database. Available at: https://gnomad.broadinstitute.org/
  19. OMIM. An Online Catalog of Human Genes and Genetic Disorders. Available at: https://omim.org/
  20. ClinVar. Available at: https://www.ncbi.nlm.nih.gov/clinvar/
  21. LOVD v.3.0 - Leiden Open Variation Database. Online gene-centered collection and display of DNA variants. Available at: https://www.lovd.nl/
  22. RUSeq - проект по объединению генетической информации между клиническими лабораториями и геномными центрами России. Доступно по: https://ruseq.ru/#/
  23. Barbitoff Y.A., Khmelkova D.N., Pomerantseva E.A., Slepchenkov A.V., Zubashenko N.A., Mironova I.V. et al. Expanding the Russian allele frequency reference via cross-laboratory data integration: insights from 6,096 exome samples. medRxiv. 2021. https://dx.doi.org/10.1101/2021.11.02.21265801.
  24. Human Phenotype Ontology (HPO). Available at: https://hpo.jax.org/app/
  25. Larbuisson A., Raick D., Demelenne S., Delvigne A. ICSI diagnostic: a way to prevent total fertilization failure after 4 unsuccessful IUI. Basic Clin. Androl. 2017; 27: 18. https://dx.doi.org/10.1186/s12610-017-0061-z.
  26. Bosselut H., Paulmyer-Lacroix O., Gnisci A., Bretelle F., Perrin J., Courbiere B. Facteurs pronostiques des chances de naissance vivante enfecondation in vitro pour infertilite inexpliquee: etude de cohorte. [Prognostic factors of live-birth after in vitro fertilization for unexplained infertility: A cohort study]. Gynecol. Obstet. Fertil. Senol. 2021; 49(7-8): 601-7. (in French). https://dx.doi.org/10.1016/j.gofs.2021.01.002.
  27. Киракосян Е.В., Екимов А.Н., Павлович С.В. Значение ооцитарного фактора в развитии бесплодия неясного генеза. Акушерство и гинекология. 2022; 1: 14-21. https://dx.doi.org/10.18565/aig.2022.1.14-21.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies