Role of insulin resistance in the mechanisms of adaptation and development of female reproductive system disease


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper analyzes modern literature data on the impact of Insulin resistance (IR) on adaptation processes and development of female reproductive system disorders. The key role of IR is obvious as the integrator of energy exchange, metabolism, growth, and life span, which is phylogenetically fixed and affects all types of metabolism, fluid homeostasis, ion transport and osmotic pressure, vascular tone maintenance, cytokine balance, the intestinal microbiota state, replicative cell senescence, and other functions. Numerous studies are devoted to the study of the impact of IR on adaptation processes and development of reproductive system disease, its involvement in metabolic, endocrine, cardiovascular disorders, oncogenesis, to the participation in the development of hypertension in pregnant women, gestational diabetes mellitus, and energy-plastic supply of the fetus. The methodological basis for the analysis carried out was the study of the scientific literature of Russian and foreign databases over the past seven years. The review article presents various aspects of the problem of “IR and impaired reproduction” from molecular mechanisms to pathogenesis and summarizes the current achievements in understanding pathophysiological, compensatory and adaptive processes. Despite significant achievements and higher interest in the problem, it is important to understand that much remains to be learned in this direction in order to improve approaches to predicting, preventing, personalizing the treatment of IR-associated diseases, that is, to fully implement the 5P’s model of the current stage of medicine. Conclusion: The general biological approach to considering the role of the IR phenomenon that is vital for the balance of reciprocal relationships in a complex hierarchically built reproductive system and for the normal functioning of the mother-placenta-fetus system allows a more in-depth explanation of adaptation processes and pathogenetic mechanisms for the development of gynecological and obstetric disease and permits the formation of a holistic view from the standpoint of the closely interrelated functioning of individual body systems.

Full Text

Restricted Access

About the authors

Igor S. Lipatov

Samara State Medical University Ministry of Health of Russia

Email: i.lipatoff2012@yandex.ru
Professor, MD, PhD; Professor at the Department of Obstetrics and Gynecology No. 1 443099, Russia, Samara, Chapaevskaya str., 89

Yurii V. Tezikov

Samara State Medical University Ministry of Health of Russia

Email: yra.75@inboxru
Professor, MD, PhD; Head of the Department of Obstetrics and Gynecology No. 1 443099, Russia, Samara, Chapaevskaya str., 89

Victor L. Tyutyunnik

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology Ministry of Health of Russia

Email: tioutiounnik@mailru
Professor, MD, PhD; Leading Researcher of Research and Development Service 117997, Russia, Moscow, Ac. Oparina str., 4

Natalia E. Kan

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology Ministry of Health of Russia

Email: kan-med@mailru
Professor, MD, PhD; Deputy Director of Science 117997, Russia, Moscow, Ac. Oparina str., 4

Alina I. Kuzmina

Samara State Medical University Ministry of Health of Russia

Email: alina.cuzmina555@mailru
6th year student of the Institute of Clinical Medicine 443099, Russia, Samara, Chapaevskaya str., 89

Ellina M. Zumorina

V.D. Seredavin Samara Regional Clinical Hospital

Email: ellinazumorina@yandex.ru
doctor obstetrician-gynecologist; Perinatal Center 443095, Russia, Samara, Tashkentskaya str., 159

Mikhail S. Amosov

V.D. Seredavin Samara Regional Clinical Hospital

Email: jyckee@mail.ru
doctor obstetrician-gynecologist; Perinatal Center 443095, Russia, Samara, Tashkentskaya str., 159

References

  1. Серов В.Н. Метаболический синдром (нейрообменно-эндокринный синдром). Medica mente. Лечим с умом. 2015; 1: 16-9.
  2. Bano S., Agrawal A., Asnani M., Das V., Singh R., Pandey A. et al. Correlation of insulin resistance in pregnancy with obstetric outcome. J. Obstet. Gynaecol. India. 2021; 71(5): 495-500. https://dx.doi.org/10.1007/s13224-021-01426-9.
  3. Shapiro A.L., Schmiege S.J., Brinton J.T., Glueck D., Crume T.L., Friedman J.E. et al. Testing the fuel-mediated hypothesis: maternal insulin resistance and glucose mediate the association between maternal and neonatal adiposity, the Healthy Start study. Diabetologia. 2015; 58(5): 937-41. https://dx.doi.org/10.1007/s00125-015-3505-z.
  4. Williams K.J., Wu X. Imbalanced insulin action in chronic over nutrition: clinical harm, molecular mechanisms, and a way forward. Atherosclerosis. 2016; 247: 225-82. https://dx.doi.org/10.1016/j.atherosclerosis.2016.02.004.
  5. Govender N, Khaliq O.P, Moodley J., Naicker T. Insulin resistance in COVID-19 and diabetes. Prim. Care Diabetes. 2021; 15(4): 629-34. https://dx.doi.org/10.1016/j.pcd.2021.04.004.
  6. Nolan C.J., Nolan C.J. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift. Diab. Vasc. Dis. Res. 2019; 16(2): 118-27. https://dx.doi.org/10.1177/1479164119827611.
  7. Erion K.A., Corkey B.E. Hyperinsulinemia: a cause of obesity? Curr. Obes. Rep. 2017; 6(2): 178-86. https://dx.doi.org/10.1007/s13679-017-0261-z.
  8. Дедов И.И., Мельниченко Г.А., ред. Эндокринология. Национальное руководство. 2-е изд. М.: ГЭОТАР-Медиа; 2019. 1112с.
  9. Chen X., Stein T.P., Steer R.A., Scholl T.O. Individual free fatty acids have unique associations with inflammatory biomarkers, insulin resistance and insulin secretion in healthy and gestational diabetic pregnant women. BMJ Open Diabetes Res. Care. 2019; 7(1): e000632. https://dx.doi.org/10.1136/bmjdrc-2018-000632.
  10. Dahlmans D., Houzelle A., Jörgensen J.A., Phielix E., Lindeboom L., Hesselink M. et al. Evaluation of muscle microRNA expression in relation to human peripheral insulin sensitivity: a cross-sectional study in metabolically distinct subject. Front. Physiol. 2017; 8: 711. https://dx.doi.org/10.3389/fphys.2017.00711.
  11. Chockalingam A., Natarajan P., Thanikachalam P., Pandiyan R. Insulin resistance: the inconvenient truth. Mo Med. 2021; 118(2): 119-21.
  12. Mastrototaro L., Roden M. Insulin resistance and insulin sensitizing agents. Metabolism. 2021; 125: 154892.https://dx.doi.org/10.1016/j.metabol.2021.154892.
  13. Шилова О.Ю., Гладкая В.С. Инсулинорезистентность и нарушения репродукции (обзор литературы). Мать и дитя в Кузбассе. 2018; 75(4): 13-20.
  14. de la Monte S.M. Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer's disease. Drugs. 2017; 77(1): 47-65. https://dx.doi.org/10.1007/s40265-016-0674-0.
  15. Tsujimoto Т., Kajio H., Sugiyama T. Association between hyperinsulinemia and increased risk of cancer death in nonobese and obese people: a population-based observational study.Int. J. Cancer. 2017; 141(1): 102-11. https://dx.doi.org/10.1002/ijc.30729.
  16. Angelidi A.M., Filippaios A., Mantzoros C.S. Severe insulin resistance syndromes. J. Clin. Invest. 2021; 131(4): e142245. https://dx.doi.org/10.1172/JCI142245.
  17. He F.F., Li Y.M. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. J. Ovarian Res. 2020; 13(1): 73. https://dx.doi.org/10.1186/s13048-020-00670-3.
  18. White M.F., Kahn C.R. Insulin action at a molecular level - 100 years of progress. Mol. Metab. 2021; 52: 101304. https://dx.doi.org/10.1016/j.molmet.2021.101304.
  19. James W., Johnson R.J., Speakman J.R., Wallace D.C., Frühbeck G., Iversen P.O. et al. Nutrition and its role in human evolution. J.Intern. Med. 2019; 285(5): 533-49. https://dx.doi.org/10.1111/joim.12878.
  20. Rehman K., Akash M., Liaqat A., Kamal S., Qadir M. I., Rasul A. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit. Rev. Eukaryot. Gene Expr. 2017; 27(3): 229-36. https://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2017019712.
  21. Sargsyan A., Herman M.A. Regulation of glucose production in the pathogenesis of type 2 diabetes. Curr. Diab. Rep. 2019; 19(9): 77. https://dx.doi.org/10.1007/s11892-019-1195-5.
  22. Sarvas J.L., Khaper N., Lees S.J. The IL-6 paradox: context dependent interplay of SOCS3 and AMPK. J. Diabetes Metab. 2013; Suppl. 13: 10.4172/2155-6156. S13-003. https://dx.doi.org/10.4172/2155-6156.S13-003.
  23. Schmidt-Arras D., Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy. J. Hepatol. 2016; 64(6): 1403-15. https://dx.doi.org/10.1016/j.jhep.2016.02.004.
  24. Saini A., Faulkner S.H., Moir H., Warwick P., King J.A., Nimmo M.A.Interleukin-6 in combination with the interleukin-6 receptor stimulates glucose uptake in resting human skeletal muscle independently of insulin action. Diabetes Obes. Metab. 2014; 16(10): 931-6. https:/dx.doi.org/10.1111/dom.12299.
  25. Samuel V.T., Shulman G.I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 2016; 126(1): 12-22. https://dx.doi.org/10.1172/JCI77812.
  26. Wei Y., Xu Q., Yang H., Yang Y., Wang L., Chen H. et al. Preconception diabetes mellitus and adverse pregnancy outcomes in over 6.4 million women: A population-based cohort study in China. PLoS Med. 2019; 16(10): e1002926. https://dx.doi.org/10.1371/journal.pmed.1002926.
  27. Da Silva K., Camacho A.P, Mittestainer F.C., Carvalho B.M., Santos A., Guadagnini D. et al. Atorvastatin and diacerein reduce insulin resistance and increase disease tolerance in rats with sepsis. J. Inflamm. (Lond). 2018; 15: 8. https://dx.doi.org/10.1186/s12950-018-0184-9.
  28. Batista T.M., Jayavelu A.K., Wewer Albrechtsen N.J., Iovino S., Lebastchi J., Pan H. et al. A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 diabetes. Cell Metabolism. 2020; 32(5): 844-59. e5. https://dx.doi.org/10.1016/j.cmet.2020.08.007.
  29. De Paoli M., Zakharia A., Werstuck G.H. The role of estrogen in insulin resistance: a review of clinical and preclinical data. Am. J. Pathol. 2021; 191(9): 1490-8. https://dx.doi.org/10.1016/j.ajpath.2021.05.011.
  30. Hari Kumar K. The good, the bad, and the ugly facets of insulin resistance. Med. J. Armed. Forces India. 2020; 76(1): 4-7. https://dx.doi.org/10.1016/j.mjafi.2019.07.001.
  31. Ding H., Zhang J., Zhang F., Zhang S., Chen X., Liang W. et al. Resistance to the insulin and elevated level of androgen: A Major Cause of Polycystic Ovary Syndrome. Front. Endocrinol. (Lausanne). 2021; 12: 741764. https://dx.doi.org/10.3389/fendo.2021.741764.
  32. Bulsara J., Patel P., Soni A., Acharya S. A review: Brief insight into Polycystic ovarian syndrome. Endocr. Metab. Sci. 2021; 3: 100085. https://dx.doi.org/10.1016/j.endmts.2021.100085.
  33. Osibogun O., Ogunmoroti O., Michos E.D. Polycystic ovary syndrome and cardiometabolic risk: Opportunities for cardiovascular disease prevention. Trends Cardiovasc. Med. 2020; 30(7): 399-404. https://dx.doi.org/10.1016/j.tcm.2019.08.010.
  34. Franks S. Polycystic ovary syndrome. Medicine. 2021; 49(9): 529-32. https://dx.doi.org/10.1016/j.mpmed.2021.06.001.
  35. Cooney L.G., Dokras A. Cardiometabolic risk in polycystic ovary syndrome: current guidelines. Endocrinol. Metab. Clin. North Am. 2021; 50(1): 83-95. https://doi.org/10.1016/j.ecl.2020.11.001.
  36. Wang J., Wu D., Guo H., Li M. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci. 2019; 236: 116940. https://dx.doi.org/10.1016/j.lfs.2019.116940.
  37. Бицадзе В.О., Макацария А.Д., Стрижаков А.Н., Червенак Ф.А., ред. Жизнеугрожающие состояния в акушерстве и перинатологии. М.: МИА; 2019. 672с.
  38. Vigneri R., Sciacca L., Vigneri P. Rethinking the relationship between insulin and cancer. Trends Endocrinol. Metab. 2020; 31(8): 551-60. https://dx.doi.org/10.1016/j.tem.2020.05.004.
  39. Флорова М.С., Ярмолинская М.И., Ткаченко Н.Н., Толибова Г.Х., Траль Т.Г. Роль системы инсулин/инсулиноподобный фактор роста в патогенезе генитального эндометриоза. Журнал акушерства и женских болезней. 2021; 70(3): 65-74.https://dx.doi.org/10.17816/JOWD58194.
  40. Brown A.E., Walker M. Genetics of insulin resistance and the metabolic syndrome. Curr. Cardiol. Rep. 2016; 18(8): 75. https://dx.doi.org/10.1007/s11886-016-0755-4.
  41. Adeva-Andany M.M., Martinez-Rodriguez J., Gonzalez-Lucan M., Fernändez-Fernandez C., Castro-Quintela E. Insulin resistance is a cardiovascular risk factor in humans. Diabetes Metab. Syndr. 2019; 13(2): 1449-55. https://dx.doi.org/10.1016/j.dsx.2019.02.023.
  42. Hill M.A., Yang Y., Zhang L., Sun Z., Jia G., Parrish A.R. et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021; 119: 154766. https://dx.doi.org/10.1016/j.metabol.2021.154766.
  43. Тезиков Ю.В., Липатов И.С., Азаматов А.Р. Гормонально-метаболический паттерн доклинической стадии преэклампсии. Журнал акушерства и женских болезней. 2021; 70(3): 51-63. https://dx.doi.org/10.17816/JOWD59307.
  44. Липатов И.С., Тезиков Ю.В., Шмаков Р.Г., Азаматов А.Р., Мартынова Н.В. «Беременность - естественная модель метаболического синдрома»: результаты динамического исследования физиологической гестации. Акушерство и гинекология. 2020; 9: 88-96. https://dx.doi.org/10.18565/aig.2020.9.88-96.
  45. Липатов И.С., Тезиков Ю.В., Азаматов А.Р., Шмаков Р.Г. Общность клинических проявлений преэклампсии и метаболического синдрома: поиск обоснования. Акушерство и гинекология. 2021; 3: 81-9. https://dx.doi.org/10.18565/aig.2021.3.81-89.
  46. Гордюнина С.В. Инсулинорезистентность при беременности. Проблемы эндокринологии. 2013; 5: 61-6. https://dx.doi.org/10.14341/probl201359561-66.
  47. Хромылев А.В., Макацария А.Д. Ожирение, метаболический синдром и тромбофилия. Акушерство и гинекология. 2017; 10: 27-33. https://dx.doi.org/10.18565/aig.2017.10.27-33.
  48. Чабанова Н.Б., Матаев С.И., Василькова Т.Н., Трошина И. А. Метаболические нарушения при адипоцитокиновом дисбалансе и гестационные осложнения. Ожирение и метаболизм. 2017; 14(1): 9-16. https://dx.doi.org/10.14341/omet201719-16.
  49. Сухих Г.Т., Силачев Д.Н., Горюнов А.В., Волочаева М.В., Шмаков Р.Г. Роль дисфункции стволовых клеток в развитии больших акушерских синдромов. Акушерство и гинекология. 2018; 7: 5-11. https://dx.doi.org/10.18565/aig.2018.7.5-11.
  50. Lima R.A., Desoye G., Simmons D., Devlieger R., Galjaard S., Corcoy R. et al. The importance of maternal insulin resistance throughout pregnancy on neonatal adiposity. Paediatr. Perinat. Epidemiol. 2021; 35(1): 83-91. https://dx.doi.org/10.1111/ppe.12682.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies