The significance of the oocyte factor in the development of infertility of unclear genesis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Infertility of unclear genesis is diagnosed in a married couple with no obvious defects in the reproductive system. A number of cases with infertility of unclear genesis are found to have impaired processes of fertilization and early embryogenesis through in vitro fertilization (IVF) programs. This may suggest that infertility of unclear genesis may be due, inter alia, to gamete defects. The sources of world literature have been reviewed in the databases Scopus, Web of Science, MedLine, Cochrane CENTRAL, Cochrane Database of Systematic Reviews (CDSR), Database of Abstracts of Reviews of Effectiveness (DARE), EMBASE, Global Health, CyberLeninka, and Russian Science Citation Index (RSCI) for a comprehensive study of the contribution of the oocyte factor to infertility. Diminished oocyte quality in most women is associated with their natural aging. However, some young women have low rates of fertilization and embryo development during IVF, which indirectly indicates the irregularly low quality of their oocytes and may be a manifestation of accelerated aging processes. In another portion of women, the low quality of oocytes is probably due to mutations in the genes encoding proteins involved in the processes of oocyte development. The low quality of oocytes may be associated with mutations in the PATL2, TUBB8, WEE2, and PAD16 genes, the change in expression of which leads to impaired oocyte maturation at metaphase of meiosis II (MII), to decreased oocyte ability for full fertilization and embryo formation, and to early embryonic development arrest, respectively. It is difficult to develop screening tests to identify these mutations, as they often occur sporadically and are not Inherited due to infertility. Conclusion: Genetic diagnosis is necessary to optimize treatment policy for patients with infertility, including that of unclear genesis, and to reduce the time before making a decision, for example, on the use of donor oocytes.

Full Text

Restricted Access

About the authors

Evgeniya V. Kirakosyan

I.M. Sechenov First Moscow State Medical University Ministry of Health of the Russian Federation (Sechenov University); Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology Ministry of Health of the Russian Federation

Email: evgeniya.kirakosyan@mail.ru
graduate, Department of Obstetrics, Gynecology, Perinatology and Reproductology 117997, Russia, Moscow, Akademika Oparina str., 4

Alexey N. Ekimov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology Ministry of Health of the Russian Federation

Email: a_ekimov@oparina4.ru
doctor of clinical laboratory diagnostics, Head of the Preimplantation Genetic Screening Group of the Laboratory of Molecular Genetic Methods 117997, Russia, Moscow, Akademika Oparina str., 4

Stanislav V. Pavlovich

I.M. Sechenov First Moscow State Medical University Ministry of Health of the Russian Federation (Sechenov University); Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology Ministry of Health of the Russian Federation

Email: s_pavlovich@oparina4.ru
PhD., Academic Secretary; Professor, Department of Obstetrics, Gynecology, Perinatology and Reproductology 117997, Russia, Moscow, Akademika Oparina str., 4

References

  1. Siristatidis C., Pouliakis A., Sergentanis T.N. Special characteristics, reproductive, and clinical profile of women with unexplained infertility versus other causes of infertility: a comparative study. J. Assist. Reprod. Genet. 2020; 37(8): 1923-30. https://dx.doi.org/10.1007/s10815-020-01845-z.
  2. Practice Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org; Practice Committee of the American Society for Reproductive Medicine. Evidence-based treatments for couples with unexplained infertility: a guideline. Fertil. Steril. 2020; 113(2): 305-22. https://dx.doi.org/10.1016/j.fertnstert.2019.10.014.
  3. ACOG Committee. Infertility orkup for the women’s health specialist: ACOG Committee Opinion, Number 781. Obstet. Gynecol. 2019; 133(06): e377-84. https://dx.doi.org/10.1097/AOG.0000000000003271.
  4. Buckett W., Sierra S. The management of unexplained infertility: an evidence-based guideline from the Canadian Fertility and Andrology Society. Reprod. Biomed. Online. 2019; 39(4): 633-40. https://dx.doi.org/10.1016/j.rbmo.2019.05.023.
  5. National Institute for Health Care Excellence Fertility Problems: Assessment and Treatment NICE Clinical Guidelines [CG 156]. United Kingdom: NICE; 2017.
  6. Назаренко Т.А. Вспомогательная репродукция в клинической практике. Разбор клинических случаев с использованием международных и отечественных рекомендаций. М.: МедКом-Про; 2020. 121с.
  7. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. WHO; 2010.
  8. Aitken R.J. The Male Is significantly implicated as the cause of unexplained infertility. Semin. Reprod. Med. 2020; 38(1): 3-20. https://dx.doi.org/10.1055/s-0040-1718941.
  9. Patel A.S., Leong J.Y., Ramasamy R. Prediction of male infertility by the World Health Organization laboratory manual for assessment of semen analysis: A systematic review. Arab J. Urol. 2017; 16(1): 96-102. https://dx.doi.org/10.1016/j.aju.2017.10.005.
  10. Zheng D., Nguyen Q.N., Li R., Dang V.Q. Is Intracytoplasmic Sperm Injection the Solution for all in Unexplained Infertility? Semin. Reprod. Med. 2020; 38(1): 36-47. https://dx.doi.org/10.1055/s-0040-1719085.
  11. Moreau J., Gatimel N., Parinaud J., Leandri R. Results of intrauterine inseminations with two pooled sequential ejaculates in cases of oligozoospermia. Asian J. Androl. 2018; 20(5): 523-4. https://dx.doi.org/10.4103/aja.aja_22_18.
  12. van Welie N., Ludwin A., Martins W.P., Mijatovic V., Dreyer K. Tubal flushing treatment for unexplained infertility. Semin. Reprod. Med. 2020; 38(1): 74-86. https://dx.doi.org/10.1055/s-0040-1721720.
  13. Hunt S., Abdallah K.S., Ng E., Rombauts L., Vollenhoven B., Mol B.W. Impairment of uterine contractility is associated with unexplained infertility. Semin. Reprod. Med. 2020; 38(1): 61-73. https://dx.doi.org/10.1055/s-0040-1716409.
  14. Назаренко Т.А. Эндокринные факторы женского и мужского бесплодия. Принципы гормонального лечения. М.: МИА; 2017. 132с.
  15. Steiner A.Z., Pritchard D., Stanczyk F.Z., Kesner J.S., Meadows J.W., Herring A.H. et al. Association between biomarkers of ovarian reserve and infertility among older women of reproductive age. JAMA. 2017; 318(14): 1367-76. https://dx.doi.org/10.1001/jama.2017.14588.
  16. Torrealday S., Kodaman P., Pal L. Premature ovarian insufficiency - an update on recent advances in understanding and management. F1000Res. 2017; 6: 2069. https://dx.doi.org/10.12688/f1000research.11948.1.
  17. Zhang B., Meng Y., Jiang X., Liu C., Zhang H., Cui L. et al. IVF outcomes of women with discrepancies between age and serum anti-Müllerian hormone levels. Reprod. Biol. Endocrinol. 2019; 17(1): 58. https://dx.doi.org/10.1186/s12958-019-0498-3.
  18. Morin S.J., Patounakis G., Juneau C.R., Neal S.A., Scott R.T., Seli E. Diminished ovarian reserve and poor response to stimulation in patients №38 years old: a quantitative but not qualitative reduction in performance. Hum. Reprod. 2018; 33(8): 1489-98. https://dx.doi.org/10.1093/humrep/dey238.
  19. Law Y.J., Zhang N., Venetis C.A., Chambers G.M., Harris K. The number of oocytes associated with maximum cumulative live birth rates per aspiration depends on female age: a population study of 221 221 treatment cycles. Hum. Reprod. 2019; 34(9): 1778-87. https://dx.doi.org/10.1093/humrep/dez100.
  20. Hariton E., Kim K., Mumford S.L., Palmor M., Bortoletto P., Cardozo E.R. et al. Total number of oocytes and zygotes are predictive of live birth pregnancy in fresh donor oocyte in vitro fertilization cycles. Fertil. Steril. 2017; 108(2): 262-8. https://dx.doi.org/10.1016/j.fertnstert.2017.05.021.
  21. Franasiak J.M., Forman E.J., Hong K.H., Werner M.D., Upham K.M., Treff N.R. et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 2014; 101(3): 656-63.e1. https://dx.doi.org/10.1016/j.fertnstert.2013.11.004.
  22. Cimadomo D., Fabozzi G., Vaiarelli A., Ubaldi N., Ubaldi F.M., Rienzi L. Impact of maternal age on oocyte and embryo competence. Front. Endocrinol. (Lausanne). 2018; 9: 327. https://dx.doi.org/10.3389/fendo.2018.00327.
  23. Christodoulaki A., Boel A., Tang M., Roo C., Stoop D., Heindryckx B. Prospects of germline nuclear transfer in women with diminished ovarian reserve. Front. Endocrinol. (Lausanne). 2021; 12: 635370. https://dx.doi.org/10.3389/fendo.2021.635370.
  24. Abdallah K.S., Hunt S., Abdullah S.A., Mol B.W.J., Youssef M.A. How and why to define unexplained infertility? Semin. Reprod. Med. 2020; 38(1): 55-60. https://dx.doi.org/10.1055/s-0040-1718709.
  25. van Eekelen R., Eijkemans M.J., Mochtar M., Mol F., Mol B.W., Groen H. et al. Cost-effectiveness of medically assisted reproduction or expectant management for unexplained subfertility: when to start treatment? Hum. Reprod. 2020; 35(9): 2037-46. https://dx.doi.org/10.1093/humrep/deaa158.
  26. Polyzos N.P., Drakopoulos P., Parra J., Pellicer A., Santos-Ribeiro S., Tournaye H. et al. Cumulative live birth rates according to the number of oocytes retrieved after the first ovarian stimulation for in vitro fertilization/intracytoplasmic sperm injection: a multicenter multinational analysis including -15,000 women. Fertil. Steril. 2018; 110(4): 661-70.e1. https://dx.doi.org/10.1016/j.fertnstert.2018.04.039.
  27. Devesa M., Tur R., Rodriguez I., Coroleu B., Martinez F., Polyzos N.P. Cumulative live birth rates and number of oocytes retrieved in women of advanced age. A single centre analysis including 4500 women >38 years old. Hum. Reprod. 2018; 33(11): 2010-7. https://dx.doi.org/10.1093/humrep/dey295.
  28. Somigliana E., Paffoni A., Busnelli A., Filippi F., Pagliardini L., Vigano P. et al. Age-related infertility and unexplained infertility: an intricate clinical dilemma. Hum. Reprod. 2016; 31(7): 1390-6. https://dx.doi.org/10.1093/humrep/dew066.
  29. Gheldof A., Mackay D.J.G., Cheong Y., Verpoest W. Genetic diagnosis of subfertility: the impact of meiosis and maternal effects. J. Med. Genet. 2019; 56(5): 271-82. https://dx.doi.org/10.1136/jmedgenet-2018-105513.
  30. Greaney J., Wei Z., Homer H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Hum. Reprod. Update. 2018; 24(2): 135-61. https://dx.doi.org/10.1093/humupd/dmx035.
  31. Chen B., Zhang Z., Sun X., Kuang Y., Mao X., Wang X. et al. Biallelic mutations in PATL2 cause female infertility characterized by oocyte maturation arrest. Am. J. Hum. Genet. 2017; 101(4): 609-15. https://dx.doi.org/10.1016/j.ajhg.2017.08.018.
  32. Astbury P., Subramanian G.N., Greaney J., Roling C., Irving J., Homer H.A. The presence of immature GV-stage oocytes during IVF/ICSI is a marker of poor oocyte quality: A Pilot Study. Med. Sci. (Basel). 2020; 8(1): 4. https://dx.doi.org/10.3390/medsci8010004.
  33. Sang Q., Li B., Kuang Y., Wang X., Zhang Z., Chen B. et al. Homozygous mutations in WEE2 cause fertilization failure and female infertility. Am. J. Hum. Genet. 2018; 102(4): 649-57. https://dx.doi.org/10.1016/j.ajhg.2018.02.015.
  34. Riris S., Homer H. Digital multiplexed mRNA analysis of functionally important genes in single human oocytes and correlation of changes in transcript levels with oocyte protein expression. Fertil. Steril. 2014; 101(3): 857-64. https://dx.doi.org/10.1016/j.fertnstert.2013.11.125.
  35. Киракосян Е.В., Назаренко Т. А., Павлович С. В. Поиск причин форми -рования нарушений репродуктивной системы: обзор научных исследований. Акушерство и гинекология. 2021; 11: 18-25. https://dx.doi.org/10.18565/aig.2021.11.18-25.
  36. Wagner M., Yoshihara M., Douagi I., Damdimopoulos A., Panula S., Petropoulos S. et al. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat.Commun. 2020; 11(1): 1147. https://dx.doi.org/10.1038/s41467-020-14936-3.
  37. Bertoldo M.J., Listijono D.R., Ho W.H.J., Riepsamen A.H., Goss D.M., Richani D. et al. NAD+ repletion rescues female fertility during reproductive aging. Cell Rep. 2020; 30(6): 1670-81.e7. https://dx.doi.org/10.1016/j.celrep.2020.01.058.
  38. Jelin A.C., Vora N. Whole exome sequencing: applications in prenatal genetics. Obstet. Gynecol. Clin. North Am. 2018; 45(1): 69-81. https://dx.doi.org/10.1016/j.ogc.2017.10.003.
  39. Feliubadalo L., Tonda R., Gausachs M., Trotta J.R., Castellanos E., Lopez-Doriga A. et al. Benchmarking of whole exome sequencing and ad hoc designed panels for genetic testing of hereditary cancer. Sci. Rep. 2017; 7: 37984. https://dx.doi.org/10.1038/srep37984.
  40. de Bruin C., Dauber A. Insights from exome sequencing for endocrine disorders. Nat. Rev. Endocrinol. 2015; 11(8): 455-64. https://dx.doi.org/10.1038/nrendo.2015.72.
  41. Mu W., Schiess N., Orthmann-Murphy J.L., El-Hattab A.W. The utility of whole exome sequencing in diagnosing neurological disorders in adults from a highly consanguineous population. J. Neurogenet. 2019; 33(1): 21-6. https://dx.doi.org/10.1080/01677063.2018.1555249.
  42. Simon A.J., Golan A.C., Lev A., Stauber T., Barel O., Somekh I. et al. Whole exome sequencing (WES) approach for diagnosing primary immunodeficiencies (PIDs) in a highly consanguineous community. Clin. Immunol. 2020; 214: 108376. https://dx.doi.org/10.1016/j.clim.2020.108376.
  43. Morava E., Baumgartner M., Patterson M., Peters V., Rahman S. Newborn screening: To WES or not to WES, that is the question. J. Inherit. Metab. Dis. 2020; 43(5): 904-5. https://dx.doi.org/10.1002/jimd.12303.
  44. Gorcenco S., Ilinca A., Almasoudi W., Kafantari E., Lindgren A.G., Puschmann A. New generation genetic testing entering the clinic. Parkinsonism Relat. Disord. 2020; 73: 72-84. https://dx.doi.org/10.1016/j.parkreldis.2020.02.015.
  45. Суспицын Е.Н., Тюрин В.И., Имянитов Е.Н., Соколенко А.П. Полноэкзомное секвенирование: принципы и диагностические возможности. Педиатр. 2016; 7(4): 142-6. https://dx.doi.org/10.17816/PED74142-146.
  46. Miller D.T., Lee K., Chung W.K., Gordon A.S., Herman G.E., Klein T.E. et al. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021; 23(8): 1381-90. https://dx.doi.org/10.1038/s41436-021-01172-3.
  47. Miller D.T., Lee K., Chung W.K., Gordon A.S., Herman G.E., Klein T.E. et al. Correction to: ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021; 23(8): 1582-4. https://dx.doi.org/10.1038/s41436-021-01278-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies