Characteristics of the organic acid profile of amniotic and cervicovaginal fluids in pregnant women at high risk for spontaneous preterm birth


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: To study the metabolomic profile of amniotic and cervicovaginal fluids and identify the potential predictors for spontaneous preterm birth in high-risk patients. Materials and methods: The prospective study included 46 pregnant women at high risk for preterm birth, the informed consent was obtained from all the patients. The patients were divided into two groups: group I consisted of 12 pregnant women who had preterm birth and group II included 34 pregnant women who had full-term delivery. Amniotic fluid sampling was performed using diagnostic transabdominal amniocentesis. An Agilent 1260 high performance liquid chromatography system was used for the analysis of the samples. Results: The amniotic fluid of patients with spontaneous preterm birth had the panels of the following organic acids: N-acetylaspartic acid, 2-hydroxy-3-methylpentanoic acid, 4-hydroxyphenylpyruvic acid; sensitivity 92% and specificity 38%. The cervicovaginal fluid had N-acetyl-tyrosine, 2-oxoadipic acid, 3-methylglutaconic acid, 4-hydroxyphenylpyruvic acid; sensitivity 92% and specificity 82%. Conclusion: The identification of the organic acid panel in the amniotic fluid invasively and in the cervicovaginal fluid noninvasively using high-performance liquid chromatography makes it possible to predict the likelihood of spontaneous preterm labor.

Full Text

Restricted Access

About the authors

Ksenia A. Gorina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: k_gorina@oparina4.ru
Junior Researcher at the Department of Pregnancy Pathology

Zulfiya S. Khodzhaeva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: zkhodjaeva@mam.ru
Dr. Med. Sci., Professor, Deputy Director for Research of the Institute of Obstetrics

Vitaliy V. Chagovets

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: vvchagovets@gmail.com
PhD, Senior Researcher at the Laboratory of Proteomics and Metabolomics of Human Reproduction

Nataliia L. Starodubtseva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: n_starodubtseva@oparina4.com
PhD, Head of the Laboratory of Proteomics of Human Reproduction

Vladimir E. Frankevich

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_frankevich@oparina4.ru
PhD, Head of the Department of Systems Biology in Reproduction

Tatyana V. Priputnevich

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: priputl@gmail.com
Dr. Med. Sci., Head of the Departament of Microbiology and Clinical Pharmacology

References

  1. Vittar J., Papageorghiou A.T., Knight H.E., Gravett M.G., Iams J., Waller S.A. et al. The preterm birth syndrome: a prototype phenotypic classification. Am. J. Obstet. Gynecol. 2012; 206(2): 119-23. https://dx.doi.org/10.1016/j.ajog.2011.10.866.
  2. Committee on Practice Bulletins-Obstetrics; The American College of Obstetricians and Gynecologists. Practice bulletin no. 130: prediction and prevention of preterm birth. Obstet. Gynecol. 2012; 120(4): 964-73. https://dx.doi.org/10.1097/AGG.0b013e3182723b1b.
  3. Romero R., Espinoza J., Kusanovic J.P., Gotsch F., Hassan S., Erez O. et al. The preterm parturition syndrome. BJOG. 2006; 113(Suppl.): 17-42. https://dx.doi.org/10.1111/j.1471-0528.2006.01120.x.
  4. Azad R.K., Shulaev V. Metabolomics technology and bioinformatics for precision medicine. Brief Bioinform. 2019; 20(6): 1957-71. https://dx.doi.org/10.1093/bib/bbx170.
  5. Clish C.B. Metabolomics: an emerging but powerful tool for precision medicine. Mol. Case Stud. 2015; 1(1): a000588. https://dx.doi.org/10.1101/mcs.a000588.
  6. Beger R.D., Dunn W., Schmidt M.A., Gross S.S., Kirwan J.A., Cascante M. et al. Metabolomics enables precision medicine: A white paper, community perspective. Metabolomics. 2016; 12(9): 149. https://dx.doi.org/10.1007/s11306-016-1094-6.
  7. Beger R.D., Schmidt M.A., Kaddurah-Daouk R. Current concepts in pharmacometabolomics, biomarker discovery, and precision medicine. Metabolites. 2020; 10(4): 129. https://dx.doi.org/10.3390/metabo10040129.
  8. Menon R., Jones J., Gunst P.R., Kacerovsky M., Fortunato S.J., Saade G.R., Basraon S. Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reprod. Sci. 2014; 21(6): 791-803. https://dx.doi.org/10.1177/1933719113518987.
  9. Romero R., Espinoza J., Kusanovic J.P., Gotsch F., Hassan S., Erez O. et al. The preterm parturition syndrome. BJOG. 2006; 113(Suppl. 3): 17-42. https://dx.doi.org/10.1111/j.1471-0528.2006.01120.x.
  10. Горина К.А., Ходжаева З.С., Белоусов Д.М., Баранов И.И., Гохберг Я.А., Пащенко А.А. Преждевременные роды: прошлые ограничения и новые возможности. Акушерство и гинекология. 2020; 1: 12-9. [Gorina K.A., Khodzhaeva Z.S., Belousov D.M., Baranov 1.1., Gokhberg Y.A., Pashchenko A.A. Premature birth: past restrictions and new opportunities. Obstetrics and Gynecology. 2020; 1: 12-19. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.1.12-119.
  11. Elshenawy S., Pinney S.E., Stuart T., Doulias P.-T., Zura G., Parry S. et al. The metabolomic signature of the placenta in spontaneous preterm birth. Int. J. Mol. Sci. 2020; 21(3): 1043. https://dx.doi.org/10.3390/ijms21031043.
  12. Ходжаева З.С., Горина К.А., Муминова К.Т., Иванец Т.Ю., Кесслер Ю.В., Припутневич Т.В., Белоусов Д.М. Особенности состава амниотической жидкости у беременных высокого риска преждевременных родов. Акушерство и гинекология. 2020; 8: 82-7. [Khodzhaeva Z.S., Gorina K.A., Muminova K.T., Ivanets T.Y., Kessler Y.V., Priputnevich T.V., Belousov D.M. Amniotic fluid composition in pregnant women at high risk of preterm birth. Obstetrics and Gynecology. 2020; 8: 82-7. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.8.82-87.
  13. Mozurkewich E.L., Klemens C. Omega-3 fatty acids and pregnancy: current implications for practice. Curr. Opin. Obstet. Gynecol. 2012; 24(2): 72-7. https://dx.doi.org/10.1097/GCO.0b013e328350fd34.
  14. Baraldi E., Giordano G., Stocchero M., Moschino L., Zaramella P., Tran M.R. et al. Untargeted metabolomic analysis of amniotic fluid in the prediction of preterm delivery and bronchopulmonary dysplasia. PLoS One. 2016; 11(10): e0164211. https://dx.doi.org/10.1371/journal.pone.0164211.
  15. Zegels G., Van Raemdonck G.A., Tjalma W.A., Van Ostade X.W. Use of cervicovaginal fluid for the identification of biomarkers for pathologies of the female genital tract. Proteome Sci. 2010; 8: 63. https://dx.doi.org/10.1186/1477-5956-8-63.
  16. Ghartey J., Bastek J.A., Brown A.G., Anglim L., Elovitz M.A. Women with preterm birth have a distinct cervicovaginal metabolome. Am. J. Obstet. Gynecol. 2015; 212(6): 776. e1-776. e12. https://dx.doi.org/10.1016/j.ajog.2015.03.052.
  17. Starodubtseva N.L., Kononikhin A.S., Bugrova A.E., Chagovets V., Indeykina M., Krokhina K.N., Nikitina I.V., Kostyukevich Y.I., Popov I.A., Larina I.M., Timofeeva L.A., Frankevich V.E., Ionov O.V., Degtyarev D.N., Nikolaev E.N., Sukhikh G.T. Investigation of urine proteome of preterm newborns with respiratory pathologies. J. Proteomics. 2016; 149: 31-7. https://dx.doi.org/10.1016/j.jprot.2016.06.012.
  18. Surendran S. Upregulation of N-acetylaspartic acid alters inflammation, transcription and contractile associated protein levels in the stomach and smooth muscle contractility. Mol. Biol. Rep. 2009; 36(1): 201-6. https://dx.doi.org/10.1007/s11033-007-9167-2.
  19. Lee J.H., Park E., Jin H.J., Lee Y., Choi S.J., Lee G.W. et al. Antiinflammatory and anti-genotoxic activity of branched chain amino acids (BCAA) in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophages. Food Sci. Biotechnol. 2017; 26(5): 1371-7. https://dx.doi.org/10.1007/s10068-017-0165-4.
  20. Surendran S., Bhatnagar M. Upregulation of N-acetylaspartic acid induces oxidative stress to contribute in disease pathophysiology. Int. J. Neurosci. 2011; 121(6): 305-9. https://dx.doi.org/10.3109/00207454.2011.558225.
  21. Grimolizzi F., Arranz L. Multiple faces of succinate beyond metabolism in blood. Haematologica. 2018; 103(10): 1586-92. https://dx.doi.org/10.3324/haematol.2018.196097.
  22. Keiran N., Ceperuelo-Mallajre V., Calvo E., Hernandez-Alvarez M.I., Ejarque M., Nunez-Roa C. et al. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat. Immunol. 2019; 20(5): 581-92. https://dx.doi.org/10.1038/s41590-019-0372-7.
  23. Guo A.C., Jewison T., Wilson M., Liu Y., Knox C., Djoumbou Y. et al. ECMDB: the E. coli metabolome database. Nucleic Acids Res. 2013; 41(Database issue): D625-30. https://dx.doi.org/10.1093/nar/gks992.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies