The role of plasma extracellular vesicles as predictors of gestational diabetes mellitus in the first trimester of pregnancy


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: To investigate the composition and concentration of plasma extracellular vesicles (ECVs) in the f irst trimester of pregnancy, and assess their potential as an early predictor of gestational diabetes mellitus (GDM). Materials and methods: The prospective study enrolled 45 pregnant women aged 24 to 42 years managed at the V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia. The patients were divided into two groups categorized by pregnancy outcome. Group I (study group) included pregnant women with GDM (n=20), Group II (control group) included pregnant women with normoglycemia (n=25). Group I inclusion criteria were single pregnancy and GDM conf irmed by oral glucose tolerance test (OGTT). The inclusion criteria for Group II were singleton pregnancy with normal OGTT results. All patients gave their informed consent to participate in the study. The criteria for not including patients were multiple pregnancies, chromosomal abnormalities, type 1 and 2 diabetes mellitus, autoimmune diseases, cancer, and congenital fetal malformations. Venous blood samples were taken at 11-14 weeks of pregnancy. Extracellular vesicles were isolated from plasma by centrifugation. The linear size and the number of extracellular vesicles were measured by nanoparticle tracking analysis (NTA). Results: NTA showed that the mean size of the extracellular vesicles was almost identical [92 (85, 103) nm in the study group and 92 (84, 101) nm in the control group]. However, the concentration of ECVs was signif icantly higher in patients who subsequently developed GDM. The likelihood of developing GDM based on ECV concentration was evaluated using receiver operating characteristics (ROC) analysis. The area under the ROC curve was 0.813±0.080 with 95% CI: 0.657-0.970. The resulting model was statistically significant (p=0.003). The optimal cut-off value of ECV concentration corresponding to the highest value of the Youden’s index was 3.224×1011 parts/ ml. The development of GDM was predicted at ECVs concentrations above or equal to this value. The sensitivity and specificity of the model were 80.0% and 66.7%, respectively. Conclusion: The study f indings suggest new possibilities for early prediction of GDM by studying the concentration of extracellular vesicles.

Full Text

Restricted Access

About the authors

Zulfiya S. Khodzhaeva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Dr. Med. Sci., Professor, Deputy Director for Research, Institute of Obstetrics

Maria E. Abramova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: m_abramova@oparina4.ru
graduate student at the High Risk Pregnancy Department

Kamilla T. Muminova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: k_muminova@oparina4.ru
Ph.D., Researcher of 1st Department of Obstetric Pathology of Pregnancy

Kseniia A. Gorina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: k_gorina@oparina4.ru
PhD, Researcher at the High Risk Pregnancy Department

Ekaterina R. Frolova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: kattirella@gmail.com
graduate student at the High Risk Pregnancy Department

Kirill V. Goryunov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: k_gorunov@oparina4.ru
PhD, Researcher at the Department of Cell Technologies

Denis N. Silachev

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: d_silachev@oparina4.ru
PhD (Bio), Head of the Department of Cell Technologies

Yulia A. Shevtsova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: yu_shevtsova@oparina4.ru
Junior Researcher at the Department of Cell Technologies

References

  1. Melchior H., Kurch-Bek D., Mund M. The prevalence of gestational diabetes. Dtsch. Arztebl. Int. 2017; 114(24): 412-8. https://dx.doi.org/10.3238/arztebl.2017.0412.
  2. Hod M., Kapur A., Sacks D.A., Hadar E., Agarwal M., Di Renzo G.C. et al. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int. J. Gynaecol. Obstet. 2015; 131(Suppl. 3): S173-211. https://dx.doi.org/10.1016/S0020-7292(15)30033-3.
  3. Zhu Y., Zhang C. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: A global perspective. Curr. Diab. Rep. 2016; 16(1): 7. https://dx.doi.org/10.1007/s11892-015-0699-x.
  4. Дедов И.И., Шестакова М.В., Викулова О.К., Железнякова А.В., Исаков М.А. Сахарный диабет в Российской Федерации: распространенность, заболеваемость, смертность, параметры углеводного обмена и структура сахароснижающей терапии по данным Федерального регистра сахарного диабета, статус 2017 г. Сахарный диабет. 2018; 21(3): 144-59. [Dedov I.I., Shestakova M.V., Vikulova O.K., Zheleznyakova A.V., Isakov M.A. Diabetes mellitus in Russian Federation: prevalence, morbidity, mortality, parameters of glycaemic control and structure of glucose lowering therapy according to the Federal Diabetes Register, Status 2017. Diabetes mellitus. 2018; 21(3): 144-59. (in Russian)]. https://dx.doi.org/10.14341/DM9686.
  5. Ходжаева З.С., Снеткова Н.В., Клименченко Н.И., Абрамова М.Е., Дегтярева Е.И., Донников А.Е. Клинико-молекулярно-генетические детерминанты формирования гестационного сахарного диабета. Акушерство и гинекология. 2019; 4: 18-26. [Khodzhaeva Z.S., Snetkova N.V., Klimenchenko N.I., Abramova M.E., Degtyareva E.I., Donnikov A.E. Clinical and molecular genetic determinants of the development of gestational diabetes mellitus. Obstetrics and Gynecology. 2019; 4: 18-26. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.4.18-24.
  6. Ходжаева З.С., Снеткова Н.В., Муминова К.Т., Горина К.А., Абрамова М.Е., Есаян Р.М. Особенности течения беременности у женщин с гестационным сахарным диабетом. Акушерство и гинекология. 2020; 7: 47-52. https://dx.doi.org/10.18565/aig.2020.7.47-52.
  7. Mirghani Dirar A., Doupis J. Gestational diabetes from A to Z. World J. Diabetes. 2017; 8(12): 489-511. https://dx.doi.org/10.4239/wjd.v8.i12.489.
  8. Brink H.S., van der Lely A.J., van der Linden J. The potential role of biomarkers in predicting gestational diabetes. Endocr. Connect. 2016; 5(5): R26-34. https://dx.doi.org/10.1530/EC-16-0033.
  9. Абрамова М.Е., Ходжаева З.С., Горина К.А., Муминова К.Т., Горюнов К.В., Рагозин А.К., Силачев Д.Н. Гестационный сахарный диабет: скрининг и диагностические критерии в ранние сроки беременности. Акушерство и гинекология. 2021; 5: 25-32. [Abramova M.E., Khodzhaeva Z.S., Gorina K.A., Muminova K.T., Goryunov K.V., Ragozin A.K., Silachev D.N. Gestational diabetes mellitus: screening and diagnostic criteria in early pregnancy. Obstetrics and Gynecology. 2021; 5: 25-32. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.5.25-32.
  10. van der Pol E., Boing A., Harrison P., Sturk A., Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 2012; 64(3): 676-705. https://dx.doi.org/10.1124/pr.112.005983.
  11. Akers J., Gonda D., Kim R., Carter B., Chen C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol. 2013; 113(1): 1-11. https://dx.doi.org/10.1007/s11060-013-1084-8.
  12. Witwer K.W., Thery C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles. 2019; 8(1): 1648167. https://dx.doi.org/10.1080/20013078.2019.1648167.
  13. Mir B., Goettsch C. Extracellular vesicles as delivery vehicles of specific cellular cargo. Cells. 2020; 9(7): 1601. https://dx.doi.org/10.3390/cells9071601.
  14. Colombo M., Raposo G., Thery C. Biogenesis, secretion and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014; 30: 255-89. https://dx.doi.org/10.1146/annurev-cellbio-101512-122326.
  15. Sarker S., Scholz-Romero K., Perez A., Illanes S.E., Mitchell M.D., Rice G.E., Salomon C. Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J. Transl. Med. 2014; 12: 204. https://dx.doi.org/10.1186/1479-5876-12-204.
  16. Truong G., Guanzon D., Kinhal V., Elfeky O., Lai A., Longo S. et al. Oxygen tension regulates the miRNA profile and bioactivity of exosomes released from extravillous trophoblast cells - Liquid biopsies for monitoring complications of pregnancy. PLoS One. 2017; 12(3): e0174514. https://dx.doi.org/10.1371/journal.pone.0174514.
  17. Jayabalan N., Lai A., Nair S., Guanzon D., Scholz-Romero K., Palma C. et al. Quantitative proteomics by SWATH-MS suggest an association between circulating exosomes and maternal metabolic changes in gestational diabetes mellitus. Proteomics. 2019; 19(1-2): e1800164. https://dx.doi.org/10.1002/pmic.201800164.
  18. Salomon C., Yee S., Mitchell M., Rice G. The possible role of extravillous trophoblast-derived exosomes on the uterine spiral arterial remodeling under both normal and pathological conditions. Biomed. Res. Int. 2014; 2014: 693157. https://dx.doi.org/10.1155/2014/693157.
  19. Liu J., Wang S.Z., Wang Q.L., Du J.G., Wang B.B. Gestational diabetes mellitus is associated with changes in the concentration and Bioactivity of Placental Exosomes in the Maternal Circulation across gestation. Eur. Rev. Med. Pharmacol. Sci. 2018; 22: 2036-43. https://dx.doi.org/10.26355/eurrev_201804_14733.
  20. Saez T., Salsoso R., Leiva A., Toledo F., deVos P., Faas M. et al. Human umbilical vein endothelium-derived exosomes play a role in foetoplacental endothelial dysfunction in gestational diabetes mellitus. Biochim. Biophys. Acta. Mol. Basis Dis. 2018; 1864(2): 499-508. https://dx.doi.org/10.1016/j.bbadis.2017.11.010.
  21. James-Allan L.B., Rosario F.J., Barner K., Lai A., Guanzon D., McIntyre H.D. et al. Regulation of glucose homeostasis by small extracellular vesicles in normal pregnancy and in gestational diabetes. FASEB J. 2020; 34(4): 5724-39. https://dx.doi.org/10.1096/fj.201902522RR.
  22. Poirier C., Desgagne V., Guerin R., Bouchard L. MicroRNAs in pregnancy and gestational diabetes mellitus: emerging role in maternal metabolic regulation. Curr. Diab. Rep. 2017; 17(5): 35. https://dx.doi.org/10.1007/s11892-017-0856-5.
  23. Salomon C., Torres M.J., Kobayashi M., Scholz-Romero K., Sobrevia L., Dobierzewska A. et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One. 2014; 9(6): e98667. https://dx.doi.org/10.1371/journal.pone.0098667.
  24. Lai R.C., Yeo R.W.Y., Tan K.H., Lim S.K. Exosomes for drug delivery -a novel application for the mesenchymal stem cell. Biotechnol. Adv. 2013; 31(5): 543-51. https://dx.doi.org/10.1016/j.biotechadv.2012.08.008.
  25. International Association of Diabetes and Pregnancy Study Groups Consensus Panel. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010; 33(3): 676-82. https://dx.doi.org/10.2337/dc09-1848.
  26. Thery C., Witwer K. W., Aik aw a E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018; 7(1): 1535750. https://dx.doi.org/10.1080/20013078.2018.1535750.
  27. Zhang H., Freitas D., Kim H.S., Fabijanic K., Li Z., Chen H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 2018; 20(3): 332-43. https://dx.doi.org/10.1038/s41556-018-0040-4.
  28. Lee S.S., Won J.H., Lim G.J., Han J., Lee J.Y., Cho K.O., Bae Y.K. A novel population of extracellular vesicles smaller than exosomes promotes cell proliferation. Cell Commun. Signal. 2019; 17(1): 95. https://dx.doi.org/10.1186/s12964-019-0401-z.
  29. Tixeira R., Caruso S., Paone S., Baxter A.A., Atkin-Smith G.K., Hulett M.D., Poon I.K. Defining the morphologic features and products of cell disassembly during apoptosis. Apoptosis. 2017; 22(3): 475-7. https://dx.doi.org/10.1007/s10495-017-1345-7.
  30. Surman M., Hoja-Łukowicz D., Szwed S., Kędracka-Krok S., Jankowska U., Kurtyka M. et al. An insight into the proteome of uveal melanoma-derived ectosomes reveals the presence of potentially useful biomarkers. Int. J. Mol. Sci. 2019; 20(15): 3789. https://dx.doi.org/10.3390/ijms20153789
  31. Ciardiello C., Migliorino R., Leone A., Budillon A. Large extracellular vesicles: Size matters in tumor progression. Cytokine Growth Factor Rev. 2020; 51: 69-74. https://dx.doi.org/10.1016/j.cytogfr.2019.12.007.
  32. Zhang M., Jin K., Gao L., Zhang Z., Li F., Zhou F., Zhang L. Methods and technologies for exosome isolationand characterization. Small Methods. 2018; 2: 1800021. https://dx.doi.org/10.1002/SMTD.201800021.
  33. Zaborowski M.P., Balaj L., Breakefield X.O., Lai C.P. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience. 2015; 65(8): 783-97. https://dx.doi.org/10.1093/biosci/biv084.
  34. Salomon C., Scholz-Romero K., Sarker S., Sweeney E., Kobayashi M., Correa P. et al. Gestational diabetes mellitus is associated with changes in the concentration and bioactivity ofplacenta-derived exosomes in maternal circulation across gestation. Diabetes. 2016; 65(3): 598-609.
  35. Yuan F., Li Y.M., Wang Z. Preserving extracellular vesicles for biomedical applications: consideration of storage stability before and after isolation. Drug Deliv. 2021; 28(1):1501-9. https://dx.doi.org/10.1080/10717544.2021.1951896.
  36. Arias M., Monteiro L.J., Acuna-Gallardo S., Varas-Godoy M., Rice G.E., Monckeberg M. et al. Extracellular vesicle concentration in maternal plasma as an early marker of gestational diabetes. Rev. Med. Chil. 2019; 147(12): 1503-9. https://dx.doi.org/10.4067/S0034-98872019001201503.
  37. Nakahara A., Elfeky O., Garvey C., Guanzon D., Longo S.A., Salmon C. Exosome profiles for normal and complicated pregnancies - a longitudinal study. Obstet. Gynecol. 2019; 133: 162. https://dx.doi.org/10.1097/01.AOG.0000558864.31601.aa.
  38. Kuwabara Y., Ono K., Horie T., Nishi H., Nagao K., Kinoshita M., Watanabe S. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ. Cardiovasc. Genet. 2011; 4(4): 446-54. https://dx.doi.org/10.1161/ CIRCGENETICS.110.958975.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies