Role of insulin resistance in the mechanisms of adaptation and development of disease in postpartum and early neonatal periods


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The medical community has currently accumulated significant reliable scientific facts about the relationship of physiological and pathological insulin resistance (IR), compensatory and chronic hyperinsulinemia (HI) before conception and during pregnancy to the adaptive mechanisms of the formation of the biological mother-newborn system and to the development of postpartum diseases. Numerous studies have provided evidence that gestational IR and HI can lead to metabolic dysfunction in both the mother and the newborn with impaired lactogenesis, lactopoiesis, the development of infectious and inflammatory diseases, the transformation of gestational diabetes mellitus (DM) to type 2 DM, hypertension, obesity, metabolic syndrome, chronic kidney disease, which requires timely diagnosis. The methodological basis of the analysis was the study of the scientific literature of Russian and foreign databases over the past seven years. The review article presents all known aspects of the role of IR in the processes of postpartum adjustment and in the development of diseases in the puerperal and neonatal periods. Conclusion: Knowledge of the causes and formation of pathological IR and chronic HI and their consequences for the development of female reproductive system diseases in all periods of life necessitates an interdisciplinary approach to developing personalized programs for stratification prediction, primary prevention and rehabilitation aimed at reducing the phenotypic manifestations of hereditary and acquired high risk factors.

Full Text

Restricted Access

About the authors

Igor S. Lipatov

Samara State Medical University, Ministry of Health of Russia

Email: i.lipatoff2012@yandex.ru
Professor, MD, PhD, Professor at the Department of Obstetrics and Gynecology No. 1

Yurii V. Tezikov

Samara State Medical University, Ministry of Health of Russia

Email: yra.75@inbox.ru
Professor, MD, PhD, Head of the Department of Obstetrics and Gynecology No. 1

Victor L. Tyutyunnik

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: tioutiounnik@mail.ru
Professor, MD, PhD, Leading Researcher of Research and Development Service

Natalia E. Kan

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: kan-med@mail.ru
Professor, MD, PhD, Deputy Director of Science

Alina I. Kuzmina

Samara State Medical University, Ministry of Health of Russia

Email: alina.cuzmina555@mail.ru
6th year student of the Institute of Clinical Medicine

Ellina M. Zumorina

V.D. Seredavin Samara Regional Clinical Hospital

Email: ehina.zumorina@yandex.ru
doctor obstetrician-gynecologist, Perinatal Center

Anastasia O. Yakusheva

Samara State Medical University, Ministry of Health of Russia

Email: yakusheva.nastya1996@gmail.com
Resident of the Department of Obstetrics and Gynecology of the Institute of Clinical Medicine

References

  1. Mastrototaro L., Roden M. Insulin resistance and insulin sensitizing agents. Metabolism. 2021; 125: 154892. https://dx.doi.org/10.1016/j.metabol.2021.154892.
  2. Hill M.A., Yang Y., Zhang L., Sun Z., Jia G., Parrish A.R. et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021; 119: 154766. https://dx.doi.org/10.1016/j.metabol.2021.154766.
  3. Ross A., Riviere D., McKinlay Christopher J.D.,Bloomfield Frank H. Adaptation for life after birth: a review of neonatal physiology. Anaesth. Intensive Care Med. 2020; 21(2): 71-9. https://dx.doi.org/10.1016/j.mpaic.2019.11.004.
  4. Wang Z., Nagy R.A., Groen H., Cantineau A., van Oers A.M., van Dammen L. et al. Preconception insulin resistance and neonatal birth weight in women with obesity: role of bile acids. Reprod. Biomed. Online. 2021; 43(5): 931-9. https://dx.doi.org/10.1016/j.rbmo.2021.08.005.
  5. Plante I., Winn L.M., Vaillancourt C., Grigorova P., Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. Environ. Res. 2022; 205: 112435. https://dx.doi.org/10.1016/j.envres.2021.112435.
  6. Ramos-Roman M.A., Syed-Abdul M.M., Adams-Huet B., Casey B.M., Parks E.J. Lactation versus formula feeding: insulin, glucose, and fatty acid metabolism during the postpartum period. Diabetes. 2020; 69(8): 1624-35. https://dx.doi.org/10.2337/db19-1226.
  7. Gunderson E.P., Lewis C.E., Lin Y., Sorel M., Gross M., Sidney S. et al. Lactation duration and progression to diabetes in women across the childbearing years: The 30-Year CARDIA Study. JAMA Intern. Med. 2018; 178(3): 328-37. https://dx.doi.org/10.1001/jamainternmed.2017.7978.
  8. Ramlakhan K.P., Johnson M.R., Roos-Hesselink J.W. Pregnancy and cardiovascular disease. Nat. Rev. Cardiol. 2020; 17(11): 718-31. https://dx.doi.org/10.1038/s41569-020-0390-z.
  9. Crusell M.K.W., Hansen T.H., Nielsen T., Allin K.H., Ruhlemann M.C., Damm P. et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome. 2018; 6(1): 89. https://dx.doi.org/10.1186/s40168-018-0472-x.
  10. Skajaa G.O., Fuglsang J., Knorr S., Moller N., Ovesen P., Kampmann U. Changes in insulin sensitivity and insulin secretion during pregnancy and post partum in women with gestational diabetes. BMJ Open Diabetes Res. Care. 2020; 8(2): e001728. https://dx.doi.org/10.1136/bmjdrc-2020-001728.
  11. Retnakaran R. Diabetes in pregnancy 100 years after the discovery of insulin: Hot topics and open questions to be addressed in the coming years. Metabolism. 2021; 119: 154772. https://dx.doi.org/10.1016/j.metabol.2021.154772.
  12. Sauder K.A., Ritchie N.D. Reducing intergenerational obesity and diabetes risk. Diabetologia. 2021; 64(3): 481-90. https://dx.doi.org/10.1007/s00125-020-05341-y.
  13. McIntyre H.D., Kapur A., Divakar H., Hod M. Gestational diabetes mellitus - innovative approach to prediction, diagnosis, management, and prevention of future NCD - mother and offspring. Front. Endocrinol. (Lausanne). 2020; 11: 614533. https://dx.doi.org/10.3389/fendo.2020.614533.
  14. Ma S., Hu S., Liang H., Xiao Y., Tan H. Metabolic effects of breastfeed in women with prior gestational diabetes mellitus: A systematic review and meta-analysis. Diabetes Metab. Res. Rev. 2019; 35(3): e3108. https://dx.doi.org/10.1002/dmrr.3108.
  15. Kunasegaran T., Balasubramaniam V.R.M.T., Arasoo V.J.T., Palanisamy U.D., Ramadas A. The modulation of gut microbiota composition in the pathophysiology of gestational diabetes mellitus: a systematic review. Biology (Basel). 2021; 10(10): 1027. https://dx.doi.org/10.3390/biology10101027.
  16. Hasain Z., Mokhtar N.M., Kamaruddin N.A., MohamedIsmail N.A., Razalli N.H., Gnanou J.V. et al. Gut microbiota and gestational diabetes mellitus: a review of host-gut microbiota interactions and their therapeutic potential. Front. Cell. Infect. Microbiol. 2020; 10: 188. https://dx.doi.org/10.3389/fcimb.2020.00188.
  17. Medici Dualib P., Ogassavara J., Mattar R., Mariko Koga da Silva E., Atala Dib S., de Almeida Pititto B. Gut microbiota and gestational diabetes mellitus: a systematic review. Diabetes Res. Clin. Pract. 2021; 180: 109078. https://dx.doi.org/10.1016/j.diabres.2021.109078.
  18. Choudhury A.A., Devi Rajeswari V. Gestational diabetes mellitus - a metabolic and reproductive disorder. Biomed. Pharmacother. 2021; 143: 112183. https://dx.doi.org/10.1016/j.biopha.2021.112183.
  19. Murphy H.R., Bell R., Cartwright C., Curnow P., Maresh M., Morgan M. et al. Improved pregnancy outcomes in women with type 1 and type 2 diabetes but substantial clinic-to-clinic variations: a prospective nationwide study. Diabetologia. 2017; 60(9): 1668-77. https://dx.doi.org/10.1007/s00125-017-4314-3.
  20. Herath H., Herath R., Wickremasinghe R. Gestational diabetes mellitus and risk of type 2 diabetes 10 years after the index pregnancy in Sri Lankan women-A community based retrospective cohort study. PLoS One. 2017; 12(6): e0179647. https://dx.doi.org/10.1371/journal.pone.0179647.
  21. Powe C.E. Early pregnancy biochemical predictors of gestational diabetes mellitus. Curr. Diabetes Rep. 2017; 17(2): 12. https://dx.doi.org/10.1007/s11892-017-0834-y.
  22. Benhalima K., Jegers K., Devlieger R., Verhaeghe J., Mathieu C. Glucose intolerance after a recent history of gestational diabetes based on the 2013 WHO criteria. PLoS One. 2016; 11(6): e0157272. https://dx.doi.org/10.1371/journal.pone.0157272.
  23. Katsi V., Skalis G., Vamvakou G., Tousoulis D., Makris T. Postpartum Hypertension. Curr, Hypertens, Rep. 2020; 22(8): 58. https://dx.doi.org/10.1007/s11906-020-01058-w.
  24. Hauspurg A., Jeyabalan А. Postpartum preeclampsia or eclampsia: defining its place and management among the hypertensive disorders of pregnancy. AJOG Am. J. Obstet. Gynecol. July 06 2021. https://dx.doi.org/10.1016/j.ajog.2020.10.027.
  25. Бицадзе В.О., Макацария А.Д., Стрижаков А.Н., Червенак Ф.А., ред. Жизнеугрожающие состояния в акушерстве и перинатологии. М.: МИА; 2019. 672 с.
  26. Тезиков Ю.В., Липатов И.С., Азаматов А.Р. Гормонально-метаболический паттерн доклинической стадии преэклампсии. Журнал акушерства и женских болезней. 2021; 70(3): 51-63. [Tezikov Yu.V., Lipatov I.S., Azamatov A.R. Hormone metabolic pattern in the preclinical stage of preeclampsia. Journal of obstetrics and women's diseases. 2021; 70(3): 51-63. (in Russian)]. https://dx.doi.org/10.17816/JOWD59307.
  27. Myatt L. The prediction of preeclampsia: the way forward. Am. J. Obstet. Gynecol. Nov 19 2020; S0002-9378(20)31277-1. https://dx.doi.org/10.1016/j.ajog.2020.10.047.
  28. Cao W., Shi M., Wu L., Yang Z., Yang X., Liu H. et al. A renal-cerebral -peripheral sympathetic reflex mediates insulin resistance in chronic kidney disease. EBioMedicine. 2018; 37: 281-93. https://dx.doi.org/10.1016/j.ebiom.2018.10.054.
  29. Covella B., Vinturache A.E., Cabiddu G., Attini R., Gesualdo L., Versino E. et al. A systematic review and meta-analysis indicates long-term risk of chronic and end-stage kidney disease after preeclampsia. Kidney Int. 2019; 96(3): 711-27. https:/dx.doi.org/10.1016/j.kint.2019.03.033.
  30. Серов В.Н. Метаболический синдром (нейрообменно-эндокринный синдром). Medica mente. Лечим с умом. 2015; 1: 16-9.
  31. Bovolini A., Garcia J., Andrade M.A., Duarte J.A. Metabolic syndrome pathophysiology and predisposing factors. Int. J. Sports Med. 2021; 42(3): 199214. https://dx.doi.org/10.1055/a-1263-0898.
  32. Ishaku S.M., Karima T., Oboirien K.A., Innocent A.P., Lawal O., Jamilu T. et al. Metabolic syndrome following hypertensive disorders in pregnancy in a low-resource setting: A cohort study. Pregnancy Hypertens. 2021; 25: 129-35. https://dx.doi.org/10.1016/j.preghy.2021.05.018.
  33. Wang P.X., Deng X.R., Zhang C.H., Yuan H.J. Gut microbiota and metabolic syndrome. Chin. Med. J. (Engl). 2020; 133(7): 808-16. https://dx.doi.org/10.1097/CM9.0000000000000696.
  34. Пиголкин Ю.И., Дорошева Ж.В., Оганесян Н.С., Горностаев Д.В. Судебномедицинская диагностика внезапной смерти при метаболическом синдроме. Судебно-медицинская экспертиза. 2018; 61(1): 60-4. [Pigolkin Yu.I., Dorosheva Zh.V., Oganesyan N.S., Gornostaev D.V. The forensic medical characteristic of sudden death associated with metabolic syndrome. Sudebno-Meditsinskaya Ekspertiza/ Forensic Medical Examination. 2018; 61(1): 60-4. (in Russian)]. https://dx.doi.org/10.17116/sudmed201861160-64.
  35. Bar J., Weiner E., Levy M., Gilboa Y. The thrifty phenotype hypothesis: The association between ultrasound and Doppler studies in fetal growth restriction and the development of adult disease. Am. J. Obstet. Gynecol. MFM. 2021; 3(6): 100473. https://dx.doi.org/10.1016/j.ajogmf.2021.100473.
  36. Сергеев О.В., Никитин А.И. Концепция первопричин здоровья и болезней на ранних периодах развития (DOHaD) и отцовских первопричин, передаваемых следующим поколениям (POHaD). Акушерство, гинекология и репродукция. 2019; 13(4): 326-36. [Sergeyev O.V., Nikitin A.I. Developmental origins of health and disease (DOHaD) and paternal origins of health and disease (POHaD). Multigenerational inheritance. Obstetrics, Gynecology and Reproduction. 2019; 13(4): 326-36. (in Russian)]. https://dx.doi.org/10.17749/2313-7347.2019.13.4.326-336.
  37. Scifres C.M. Short- and long-term outcomes associated with large for gestational age birth weight. Obstet. Gynecol. Clin. North Am. 2021; 48(2): 325-37. https://dx.doi.org/10.1016/j.ogc.2021.02.005.
  38. Vaiserman A.M. Birth weight predicts aging trajectory: a hypothesis. Mech. Ageing Dev. 2018; 173: 61-70. https://dx.doi.org/10.1016/j.mad.2018.04.003.
  39. Lima R.A., Desoye G., Simmons D., Devlieger R., Galjaard S., Corcoy R. et al. The importance of maternal insulin resistance throughout pregnancy on neonatal adiposity. Paediatr. Perinat. Epidemiol. 2021; 35(1): 83-91. https://dx.doi.org/10.1111/ppe.12682.
  40. Shapiro A.L., Schmiege S.J., Brinton J.T., Glueck D., Crume T.L., Friedman J.E. et al. Testing the fuel-mediated hypothesis: maternal insulin resistance and glucose mediate the association between maternal and neonatal adiposity, the Healthy Start Study. Diabetologia. 2015; 58(5): 937-41. https://dx.doi.org/10.1007/s00125-015-3505-z.
  41. Zhu Z., Cao F., Li X. Epigenetic programming and fetal metabolic programming. Front. Endocrinol. (Lausanne). 2019; 10: 764. https://dx.doi.org/10.3389/fendo.2019.00764.
  42. Crusell M.K.W., Hansen T.H., Nielsen T., Allin K.H., Ruhlemann M.C., Damm P. et al. Comparative studies of the gut microbiota in the offspring of mothers with and without gestational diabetes. Front. Cell. Infect. Microbiol. 2020; 10: 536282. https://dx.doi.org/10.3389/fcimb.2020.536282.
  43. Martin R., Makino H., Cetinyurek Yavuz A., Ben-Amor K., Roelofs M., Ishikawa E. et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One. 2016; 11(6): e0158498. https://dx.doi.org/10.1371/journal.pone.0158498.
  44. Wei Y., Xu Q., Yang H., Yang Y., Wang L., Chen H. et al. Preconception diabetes mellitus and adverse pregnancy outcomes in over 6.4 million women: A population-based cohort study in China. PLoS Med. 2019; 16(10): e1002926. https://dx.doi.org/10.1371/journal.pmed.1002926.
  45. Боташева Т.Л., Палиева Н.В., Хлопонина А.В., Васильева В.В., Железняков а Е.В., Заводнов О. П., Гудзь Е.Б. Пол плода в формировании гестационного сахарного диабета и эндотелиальной дисфункции. Акушерство и гинекология. 2020; 9: 56-64. https://dx.doi.org/10.18565/aig.2020.9.56-64.
  46. Rehman K., Akash M., Liaqat A., Kamal S., Qadir M. I., Rasul A. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit. Rev. Eukaryot. Gene Expr. 2017; 27(3): 229-36. https://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2017019712.
  47. Faleschini S., Doyon M., Arguin M., Perron P., Bouchard L., Hivert M.F. Associations of maternal insulin resistance during pregnancy and offspring inflammation at birth and at 5 years of age: A prospective study in the Gen3G cohort. Cytokine. 2021; 146: 155636. https:/dx.doi.org/10.1016/j.cyto.2021.155636.
  48. Okdemir D., Hatipoglu N., Kurtoglu S., Siraz U.G., Akar H.H., Muhtaroglu S. et al. The role of irisin, insulin and leptin in maternal and fetal interaction. J. Clin. Res. Pediatr. Endocrinol. 2018; 10(4): 307-15. https://dx.doi.org/10.4274/jcrpe.0096.
  49. Стрижаков А.Н., Тезиков Ю.В., Липатов И.С., Мартынова Н.В., Жернакова Е.В., Букреева А.А., Добродицкая А.Д., Юсупова Р.Р. Перинатальная хрономедицина: особенности биоритмостаза плода и восстановления диады «мать-новорожденный» при физиологической и осложненной беременности. Вопросы гинекологии, акушерства и перинатологии. 2017; 16(1): 25-32. https://dx.doi.org/10.20953/1726-1678-2017-1-25-32.
  50. Zestic J., Liley H., Sanderson P. Understanding patterns in neonatal trajectories in the first 10 minutes after birth. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2020; 64(1): P684. https://dx.doi.org/10.1177/1071181320641158.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies