Cerebral-placental-uterine ratio as a novel combined parameter of obstetric Doppler ultrasonography


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To identify the percentiles of the cerebral-placental-uterine ratio (CPUR) and investigate the likelihood of giving birth to low birth weight infants in patients with reduced CPUR. Materials and methods. The study retrospectively analyzed pregnancy outcomes and f indings of 1780 Doppler studies performed in 1215 patients at 24-40 weeks of gestation. The Doppler study included measurement of pulsatility index in the fetal middle cerebral artery, umbilical cord arteries, and uterine arteries. CPUR was calculated as sequential divisions of the above parameters. Results. The study group included 79 (6.5%) newborns with birth weight <10th percentile; 1136 (93.5%) newborns with birth weight >10h percentile were assigned to the control group. The results of 1639 Doppler studies of the control group formed the basis of the CPUR percentile intervals. A decrease in CPUR <5th percentile statistically significantly increased the odds of giving birth to low birth weight infants [OR 5.0 (95%CI; 3.1-8.1) (p <0.0001)]. Conclusion. CPUR is a combined measure that is statistically significantly associated with increased odds of delivering low birth weight babies. These pilot values can be used for further prospective studies.

Full Text

Restricted Access

About the authors

Tamara A. Yarygina

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: tamarayarygina@gmail.com
specialist in ultrasound diagnostics, the Department of Ultrasound and Functional Diagnostics

Roza S. Bataeva

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: drbataeva@gmail.com
M.D., Ph.D., Associate Professor at the Division of Diagnostic Ultrasound, Russian Medical Academy of Postgraduate Education, Medical Director and Consultant

Alexandr I. Gus

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_gus@oparina4.ru
Dr. Med. Sci., Professor, Head of Ultrasound and Functional Diagnostics Department, Radiology Division

References

  1. Barker D.J. The fetal and infant origins of adult disease. BMJ. 1990; 301(6761): 1111. https://dx.doi.org/10.1136/bmj.301.6761.1111.
  2. Kwon E.J., Kim Y.J. What is fetal programming?: a lifetime health is under the control of in utero health. Obstet. Gynecol. Sci. 2017; 60(6): 506-19. https:// dx.doi.org/10.5468/ogs.2017.60.6.506.
  3. Cleal J.K., Lewis R.M. Ch. 22. The placenta and developmental origins of health and disease. In: Rosenfeld C.S., ed. The epigenome and developmental origins of health and disease. Elsevier Inc.; 2016: 439-61. https://dx.doi.org/10.1016/ B978-0-12-801383-0.00022-0.
  4. Alexander B.T., Dasinger J.H., Intapad S. Fetal programming and cardiovascular pathology. Compr. Physiol. 2015; 5(2): 997-1025. https://dx.doi.org/10.1002/ cphy.c140036.
  5. Faa G., Manchia M., Pintus R., Gerosa C., Marcialis M.A., Fanos V. Fetal programming of neuropsychiatric disorders. Birth Defects Res. C. Embryo Today. 2016; 108(3): 207-23. https://dx.doi.org/10.1002/bdrc.21139.
  6. Marciniak A., Patro-Malysza J., Kimber-Trojnar Z., Marciniak B., Oleszczuk J., Leszczynska-Gorzelak B. Fetal programming of the metabolic syndrome. Taiwan J. Obstet. Gynecol. 2017; 56(2): 133-8. https://dx.doi.org/10.1016/j. tjog.2017.01.001.
  7. Основные показатели здоровья матери и ребенка, деятельность службы охраны детства и родовспоможения в Российской Федерации за 2018 г. М.; 2019. 170с. [The main indicators of maternal and child health, the activities of the children and maternity facilities in the Russian Federation for 2018. Moscow: Ministry of Health of the Russian Federation. 2019; 170 p. (in Russian)].
  8. Оксенойт Г.К., Никитина С.Ю., Агеева Л.И., Александрова Г.А., Зайченко Н.М., Кириллова Г.Н., Леонов С.А, Огрызко Е.В., Титова И.А., Харькова Т.Л., Чумарина В.Ж., Шубочкина Е.М. Здравоохранение в России. 2017: Статистический сборник. М.: Росстат; 2017. 170с. [Oxenoite G.K., Nikitina S.Yu. Public health in Russia. 2017: Stat. Sat Rosstat. M.; 2017.170 p. (in Russian)].
  9. Ярыгина Т.А., Батаева Р.С., Гус А.И. Совершенствование тактики ведения беременности у пациенток с ложноположительным риском хромосомных аномалий плода. Акушерство и гинекология. 2020; 1: 71-7. https:// dx.doi.org/10.18565/aig.2020.1.71-77. [Yarygina T.A., Bataeva R.S., Gus A.I. Improving pregnancy management tactics in patients with a false-positive risk of fetal chromosomal abnormalities. Obstetrics and gynecology. 2020; 1: 71-7. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.1.71-77.
  10. Ганичкина М.Б., Мантрова Д.А., Кан Н.Е., Тютюнник В.Л., Хачатурян А.А., Зиганшина М.М. Ведение беременности при задержке роста плода. Акушерство и гинекология. 2017; 10: 5-11. https://dx.doi.org/10.18565/ aig.2017.10.5.5-11. [Ganichkina M.B., Mantrova D.A., Kan N.E., Tyutyunnik V.L., Khachaturian A.A., Ziganshina M.M. Management of pregnancy with fetal growth retardation. Obstetrics and gynecology. 2017; 10: 5-11. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.10.5.5-11.
  11. Giussani D.A. The fetal brain sparing response to hypoxia: physiological mechanisms. J. Physiol. 2016; 594(5): 1215-30. https://dx.doi.org/10.1113/ JP271099.
  12. Murray E., Fernandes M., Fazel M., Kennedy S.H., Villar J., Stein A. Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. BJOG. 2015; 122(8): 1062-72. https://dx.doi. org/10.1111/1471-0528.13435.
  13. Cohen E., Baerts W., van Bel F. Brain-sparing in intrauterine growth restriction: Considerations for the Neonatologist. Neonatology. 2015; 108(4): 269-76. https://dx.doi.org/10.1159/000438451.
  14. Gordijn S.J., Beune I.M., Thilaganathan B., Papageorghiou A., B as chat A.A., Baker P.N. et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet. Gynecol. 2016; 48(3): 333-9. https:// dx.doi.org/10.1002/uog.15884.
  15. Salomon L., Alfirevic Z., Da Silva Costa F., Deter R., Figueras F., Ghi T. et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 2019; 53: 715-23. https://dx.doi. org/10.1002/uog.20272.
  16. Троханова О.В., Гурьев Д.Л., Гурьева Д.Д., Ермолина Е.А., Матвеев И.М., Мартьянова М.В. Неонатальные и постнеонатальные исходы при различных нарушениях фетоплацентарного кровотока. Доктор.Ру. 2018; 10: 10-7. https://dx.doi.org/10.31550/1727-2378-2018-154-10-10-17. [Trokhanova O.V., Guryev D.L., Guryeva D.D., Ermolina E.A., Matveev I.M., Martyanova M.V. Neonatal and postneonatal outcomes for various disorders of fetoplacental blood flow. Doctor.Ru. 2018; 10 (154): 10-7 (in Russian)]. doi: 10.31550/1727-2378-2018-154-10-10-17.
  17. Khalil A., Thilaganathan B. Role of uteroplacental and fetal Doppler in identifying fetal growth restriction at term. Best Pract. Res. Clin. Obstet. Gynaecol. 2017; 38: 38-47. https://dx.doi.org/10.1016/j.bpobgyn.2016.09.003.
  18. DeVore G.R. The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am. J. Obstet. Gynecol. 2015; 213(1): 5-15. https://dx.doi.org/10.1016/j.ajog.2015.05.024.
  19. Hernandez-Andrade E., Maymon E., Erez O., Saker H., Luewan S., Garcia M. et al. A low cerebroplacental ratio at 20-24 weeks of gestation can predict reduced fetal size later in pregnancy or at birth. Fetal Diagn. Ther. 2018; 44(2): 112-23. https://dx.doi.org/10.1159/000479684.
  20. Akolekar R., Ciobanu A., Zingler E., Syngelaki A., Nicolaides K.H. Routine assessment of cerebroplacental ratio at 35-37 weeks’ gestation in the prediction of adverse perinatal outcome. Am. J. Obstet. Gynecol. 2019; 221(1): 65. e1-65. e18. https://dx.doi.org/10.1016/j.ajog.2019.03.002.
  21. Leavitt K., Odibo L., Nwabuobi C., Tuuli M.G., Odibo A. The value of introducing cerebroplacental ratio (CPR) versus umbilical artery (UA) Doppler alone for the prediction of neonatal small for gestational age (SGA) and short-term adverse outcomes. J. Matern. Fetal Neonatal Med. 2019; 21: 1-5. https://dx.doi.org/10. 1080/14767058.2019.1640206.
  22. Zohav E., Zohav E., Rabinovich M., Shenhav S., Ovadia Y.S., Anteby, E.Y. et al. Local cerebroplacental ratio reference ranges are better predictors for adverse delivery outcomes in normal weight fetuses during pregnancy. J. Matern. Fetal Neonatal Med. 2019; Nov. 25: 1-6. https://dx.doi.org/10.1080/ 14767058.2019.1685968.
  23. Ganzevoort W., Mensing Van Charante N., Thilaganathan B., Prefumo F., Arabin B., Bilardo C.M. et al. How to monitor pregnancies complicated by fetal growth restriction and delivery before 32 weeks: post-hoc analysis of TRUFFLE study. Ultrasound Obstet. Gynecol. 2017; 49(6): 769-77. https:// dx.doi.org/10.1002/uog.17433.
  24. Obican S.G., Odibo L., Tuuli M.G., Rodriguez A., Odibo A.O. Third trimester uterine artery Doppler indices as predictors of preeclampsia and neonatal small for gestational age. J. Matern. Fetal Neonatal Local cerebroplacental ratio reference ranges are better predictors for adverse delivery outcomes in normal weight fetuses during pregnancy. J. Matern. Fetal Neonatal Med. Local cerebroplacental ratio reference ranges are better predictors for adverse delivery outcomes in normal weight fetuses during pregnancy. J. Matern. Fetal Neonatal Med. Med. 2020; 33(20): 3484-9. https://dx.doi.org/10.1080/14767058.2019. 1575804.
  25. Arrue M., Garcia M., Rodriguez-Bengoa M.T., Land a J.M., Urbieta L., Maiztegui M. et al. Do low-risk nulliparous women with abnormal uterine artery Doppler in the third trimester have poorer perinatal outcomes? A longitudinal prospective study on uterine artery Doppler in low-risk nulliparous women and correlation with pregnancy outcomes. J. Matern. Fetal Neonatal Med. 2017; 30(7): 877-80. https://dx.doi.org/10.1080/14767058.2016.1190822.
  26. Monaghan C., Binder J., Thilaganathan B., Morales-Rosello J., Khalil A. Perinatal loss at term: role of uteroplacental and fetal Doppler assessment. Ultrasound Obstet. Gynecol. 2018; 52(1): 72-7. https://dx.doi.org/10.1002/uog.17500.
  27. MacDonald T.M., Hui L., Robinson A.J., Dane K.M., Middleton A.L., Tong S. et al. Cerebral-placental-uterine ratio as novel predictor of late fetal growth restriction: prospective cohort study. Ultrasound Obstet. Gynecol. 2019; 54(3): 367-75. https://dx.doi.org/10.1002/uog.20150.
  28. Papageorghiou, A.T., Kennedy S.H., Salomon L.J., Ohuma E.O., Cheikh Ismail L., Barros F.C., Lambert A., Carvalho M., Jaffer Y.A., Bertino E., Gravett M.G., Altman D.G., Purwar M., Noble J.A., Pang R., Victora C.G., Bhutta Z.A., Villar J., Gravett M.G. (2014). International standards for early fetal size and pregnancy dating based on ultrasound measurement of crown-rump length in the first trimester of pregnancy. Ultrasound Obstet Gynecol. 2014: 44(6): 641-8. https://dx.doi.org/10.1002/uog.13448.
  29. Bhide A., Acharya G., Bilardo C.M., Brezinka C., Cafici D., Hernandez-Andrade E. et al. ISUOG practice guidelines: use of Doppler ultrasonography in obstetrics. Ultrasound Obstet. Gynecol. 2013; 41(2): 233-9. https://dx.doi. org/10.1002/uog.12371.
  30. Ciobanu A., Wright A., Syngelaki A., Wright D., Akolekar R., Nicolaides K.H. Fetal Medicine Foundation reference ranges for umbilical artery and middle cerebral artery pulsatility index and cerebroplacental ratio. Ultrasound Obstet. Gynecol. 2019; 53(4): 465-72. https://dx.doi.org/10.1002/uog.20157.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies