The role of dynamic magnetic resonance imaging in the diagnosis of pelvic organ prolapse

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Dynamic magnetic resonance imaging (dMRI) of the pelvic floor is a valuable tool for diagnosing pelvic organ prolapse. It provides a comprehensive assessment of all anatomical and functional characteristics of the pelvic walls and pelvic organs. Despite the advantages of dMRI, there remains much debate regarding its diagnostic accuracy and correlation with clinical findings. This review presents an analysis of the literature on the capabilities and limitations of dMRI in the diagnosis of pelvic organ prolapse. The etiology, pathogenesis, clinical presentation, and diagnosis of this pathology were reviewed. Dynamic pelvic floor MRI provides a comprehensive assessment of the anatomical and functional characteristics of the pelvis, while being free of ionizing radiation. This method makes it possible to assess the evacuatory function of the visualized structures in dynamics. Simultaneous visualization of all three parts of the pelvic floor using dMRI enables the assessment of multicompartmental disorders, allowing surgical correction in approximately 67% of the cases. Image interpretation is discussed, beginning with viewing three orthogonal T2-weighted sequences acquired at rest to assess baseline anatomy and pelvic organ positioning. Dynamic images were then studied to assess the position of the pelvic organs in relation to the pelvic bones during different phases of straining and gel evacuation from the intestine and vagina.

Conclusion: dMRI is characterized by a high resolution and reproducibility. It allows the identification of the pathology of organs and supporting structures of all pelvic areas. dMRI is characterized by a high correlation between acquired findings and clinical data, which is important for patients with a complicated medical history or ambiguous clinical findings, as well as for multicompartment disorders.

Full Text

Restricted Access

About the authors

Aida V. Gilyadova

I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University); National Medical Research Center "Medical Rehabilitation Center", Ministry of Health of Russia

Author for correspondence.
Email: benyagueva@mail.ru
ORCID iD: 0000-0003-4343-4813

Assistant at the Department of Oncology, Radiotherapy and Plastic Surgery; obstetrician-gynecologist

Russian Federation, Moscow; Moscow

Anton A. Ishchenko

National Medical Research Center "Medical Rehabilitation Center", Ministry of Health of Russia

Email: ra2001_2001@mail.ru
ORCID iD: 0000-0001-6673-3934

PhD, Head of the Clinic of Gynecology, Reproductive and Aesthetic Medicine

Russian Federation, Moscow

Igor V. Reshetov

I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)

Email: reshetoviv@mail.ru
ORCID iD: 0000-0002-0909-6278

Academician of the RAS, Dr. Med. Sci., Professor, Head of the Department of Oncology, Radiotherapy and Plastic Surgery, N.V. Sklifosovsky Institute of Clinical Medicine; Director of the Institute of Cluster Oncology named after Prof. L.L. Levshin

Russian Federation, Moscow

Anatoly I. Ishchenko

I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)

Email: 7205502@mail.ru
ORCID iD: 0000-0003-3338-1113

Dr. Med. Sci., Professor, Head of the Department of Obstetrics and Gynecology No.1; Director of the V.F. Snegirev Obstetrics and Gynecology Clinic

Russian Federation, Moscow

Inna A. Apolikhina

I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University); Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: i_apolikhina@oparina4.ru
ORCID iD: 0000-0002-4581-6295

Dr. Med. Sci., Professor, Head of the Department of Aesthetic Gynecology and Development; Professor of the Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Vocational Education

Russian Federation, Moscow; Moscow

Aina S. Saidova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_saidova@oparina4.ru
ORCID iD: 0000-0003-3473-3109

PhD, obstetrician-gynecologist of the Department of Aesthetic Gynecology and Fetus

Russian Federation, Moscow

Elena N. Puchkova

Lapino Clinical Hospital of the "Mother and Child" Group of Companies

Email: milleyk@mail.ru
ORCID iD: 0000-0002-7743-0549

PhD, radiologist of the highest category

Russian Federation, Moscow region

Viktor S. Petrovichev

National Medical Research Center "Medical Rehabilitation Center", Ministry of Health of Russia

Email: petrovi4ev@gmail.com
ORCID iD: 0000-0002-8391-2771

PhD, Head of the Imaging Department, Center for Radiation Diagnostics

Russian Federation, Moscow

Elena A. Mershina

Medical Research and Education Centre of Lomonosov Moscow State University

Email: elena_mershina@mail.ru
ORCID iD: 0000-0002-1266-4926

PhD, Associate Professor, Department of Radiation Diagnostics and Radiation Therapy; Head of the Department of X-ray Diagnostics with MRI and CT Departments

Russian Federation, Moscow

Muminat F. Novruzalieva

I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)

Email: ms.muminat@bk.ru
ORCID iD: 0000-0003-4654-9405

student, Faculty of Medical Medicine

Russian Federation, Moscow

References

  1. Barinova E.K., Ordiyants I.M., Aryutin D.G., Ordiyants E.G., Zulumyan T.N., Damirova S.F., Dobrovolskaya D.A. Modern perspective on genital prolapse. Bulletin of Dagestan State Medical Academy. 2020; (3): 49-54. (in Russian).
  2. Danilina O.A., Volkov V.G. Prevalence of pelvic organ prolapse among women of reproductive age. Journal of New Medical Technologies. 2022; 29(1): 29-33. (in Russian). https://dx.doi.org/10.24412/1609-2163-2022-1-29-33.
  3. Yang J., He Y., Zhang X., Wang Z., Zuo X., Gao L., Hong L. Robotic and laparoscopic sacrocolpopexy for pelvic organ prolapse: a systematic review and meta-analysis. Ann. Transl. Med. 2021; 9(6): 449. https://dx.doi.org/1010.21037/atm-20-4347.
  4. Belayneh T., Gebeyehu A., Adefris M., Rortveit G., Gjerde J.L., Ayele T.A. Pelvic organ prolapse surgery and health-related quality of life: a follow-up study. BMC Womens Health. 2021; 21(1): 4. https://dx.doi.org/1010.1186/ s12905-020-01146-8.
  5. Donaldson K., Huntington A., De Vita R. Mechanics of uterosacral ligaments: current knowledge, existing gaps, and future directions. Ann. Biomed. Eng. 2021 Mar 22. https://dx.doi.org/1010.1007/s10439-021-02755-6.
  6. Wu J.M., Vaughan C.P., Goode P.S., Redden D.T., Burgio K.L., Richter H.E. et al. Prevalence and trends of symptomatic pelvic floor disorders in U.S. women. Obstet. Gynecol. 2014; 123(1): 141-8. https://dx.doi.org/1010.1097/AOG.0000000000000057.
  7. Weintraub A.Y., Glinter H., Marcus-Braun N. Narrative review of the epidemiology, diagnosis and pathophysiology of pelvic organ prolapse. Int. Braz. J. Urol. 2020; 46(1): 5-14. https://dx.doi.org/1010.1590/ S1677-5538.
  8. Abdulaziz M., Stothers L., Lazare D., Macnab A. An integrative review and severity classification of complications related to pessary use in the treatment of female pelvic organ prolapse. Can. Urol. Assoc. J. 2015; 9(5-6): E400-6. https://dx.doi.org/1010.5489/cuaj.2783.
  9. Oh S., Choi S., Lee S.Y., Jeon M.J. Posterior repair versus no posterior repair for posterior vaginal wall prolapse resolved under simulated apical support at the time of native tissue apical suspension. Int. Urogynecol. J. 2021 Feb 26. https://dx.doi.org/1010.1007/s00192-021-04728-8.
  10. Rakhimova B.S., Kamilova M.Ya., Yunusova M.M., Saidova D.A. Value of comprehensive examination of women with pelvic organ prolapse. Mother and Child. 2019; (2): 52-6. (in Russian).
  11. Barinova M.N., Solopova A.E., Tupikina N.V., Kasyan G.R., Pushkar D.J. Magnetic Resonance Imaging (MRI) for pelvic organ prolapse. Obstetrics, Gynecology and Reproduction. 2014; 8(1): 37-46. (in Russian).
  12. Mikhailov A.N., Nechiporenko A.S. The role of radiation visualization in the diagnosis of stress urinary incontinence in women with genital prolapse. Journal of the Grodno State Medical University. 2019; 17(4): 395-401. (in Russian). https://dx.doi.org/1010.25298/ 2221-8785-2019-17-4-395-401.
  13. Kikuchi J.Y., Muñiz K.S., Handa V.L. Surgical repair of the genital hiatus: a narrative review. Int. Urogynecol. J. 2021 Feb 19. https://dx.doi.org/1010.1007/s00192-021-04680-7.
  14. Manzini C., van den Noort F., Grob A.T.M., Withagen M.I.J., van der Vaart C.H. The effect of pessary treatment on puborectalis muscle function. Int. Urogynecol. J. 202; 32(6): 1409-17. https://dx.doi.org/10.1007/ s00192-021-04766-2.
  15. Conway C.K., White S.E., Russell R., Sentilles C., Clark-Patterson G.L., Miller K.S. et al. Pelvic organ prolapse: a review of in vitro testing of pelvic support mechanisms. Ochsner J. 2020; 20(4): 410-8. https://dx.doi.org/10.31486/toj.19.0089.
  16. DeLancey J.O. What's new in the functional anatomy of pelvic organ prolapse? Curr. Opin. Obstet. Gynecol. 2016; 28(5): 420-9.
  17. Noé G.K. Genital prolapse surgery: what options do we have in the age of mesh issues? J. Clin. Med. 2021; 10(2): 267. https://dx.doi.org/10.3390/ jcm10020267.
  18. Baah-Dwomoh A., McGuire J., Tan T., De Vita R. Mechanical properties of female reproductive organs and supporting connective tissues: a review of the current state of knowledge. Appl. Mech. Rev. 2016; 68(6): 060801.
  19. Tan T., Cholewa N.M., Case S.W., De Vita R. Micro-structural and biaxial creep properties of the swine uterosacral-cardinal ligament complex. Ann. Biomed. Eng. 2016; 44(11): 3225-7. https://dx.doi.org/10.1007/ s10439-016-1661-z.
  20. Tadbiri H., Hand V.L. Association between pelvic floor disorders and hernias. Int. Urogynecol. J. 2021; 32(11): 3017-22. https://dx.doi.org/10.1007/s00192-021-04762-6.
  21. Mou-Jong Sun., Yu-Li Chuang., Hui-Hsuan Lau., Tsia-Shu Lo., Tsung-Hsien Su. The efficacy and complications of using transvaginal mesh to treat pelvic organ prolapse in Taiwan: a 10-year review. Taiwan J. Obstet. Gynecol. 2021; 60(2): 187-92. https://dx.doi.org/10.1016/j.tjog.2021.01.031.
  22. Lawrence J.M., Lukacz E.S., Nager C.W., Hsu J.W., Luber K.M. Prevalence and co-occurrence of pelvic floor disorders in community-dwelling women. Obstet. Gynecol. 2008; 111(3): 678-85. https://dx.doi.org/10.1097/AOG.0b013e3181660c1b.
  23. Iglesia C.B., Smithling K.R. Pelvic organ prolapse. Am. Fam. Physician. 2017; 96(3): 179-85.
  24. Jiang M., Liu S., Deng H., Liang X., Bo Z. The efficacy and safety of fast track surgery (FTS) in patients after hip fracture surgery: a meta-analysis. J. Orthop. Surg. Res. 2021; 16(1): 162. https://dx.doi.org/10.1186/ s13018-021-02277-w.
  25. Nechiporenko A.S., Nechiporenko A.N., Mikhailov A.N. Static and dynamic pelvic MRI in women: Role in the diagnosis of genital prolapse. Innovative Technologies in Medicine. 2017; (4): 251-5. (in Russian).
  26. Kamal E.M., Abdel Rahman F.M. Role of MR imaging in surgical planning and prediction of successful surgical repair of pelvic organ prolapse. Middle East Fertil. Soc. J. 2013; 18(3): 196-201. https://dx.doi.org/10.1016/ j.mefs.2013.02.002.
  27. Gupta A., Pandya P., My-Linh Nguyen, Fashokun T., Macura1 K. Use of dynamic MRI of the pelvic floor in the assessment of anterior compartment disorders. Curr. Urol. Rep. 2018; 19(12): 112. https://dx.doi.org/10.1007/ s11934-018-0862-4.
  28. Elshazly W.G., El Nekady Ael A., Hassan H. Role of dynamic magnetic resonance imaging in management of obstructed defecation case series. Int. J. Surg. 2010; 8(4): 274-82. https://dx.doi.org/10.1016/j. ijsu.2010.02.008.
  29. DeLancey J.O. Structural support of the urethra as it relates to stress urinary incontinence: the hammock hypothesis. Am. J. Obstet. Gynecol. 1994; 170(6): 1713-20. discussion 1720-1713.
  30. Khatri G., de Leon A.D., Lockhart M.E. MR imaging of the pelvic floor. Magn Reson Imaging Clin N Am. 2017; 25(3): 457-80. https://dx.doi.org/10.1016/j.mric.2017.03.003.
  31. Singh K., Reid W.M., Berger L.A. Assessment and grading of pelvic organ prolapse by use of dynamic magnetic resonance imaging. Am. J. Obstet. Gynecol. 2001; 185(1): 71-7. https://dx.doi.org/10.1067/mob.2001.113876.
  32. Shek K.L., Dietz H.P. Intrapartum risk factors for levator trauma. BJOG. 2010; 117(12): 1485-92. https://dx.doi.org/10.1111/j.1471- 0528.2010.02704.x.
  33. Lockhart M.E., Bates G.W., Morgan D.E., Beasley T.M., Richter H.E. Dynamic 3T pelvic floor magnetic resonance imaging in women progressing from the nulligravid to the primiparous state. Int. Urogynecol. J. 2018; 29(5): 735-44. https://dx.doi.org/10.1007/s00192-017-3462-9.
  34. Morgan D.M., Larson K., Lewicky-Gaupp C., Fenner D.E., DeLancey J.O. Vaginal support as determined by levator ani defect status 6 weeks after primary surgery for pelvic organ prolapse. Int. J. Gynaecol. Obstet. 2011; 114(2): 141-4. https://dx.doi.org/10.1016/j.ijgo.2011.02.020.
  35. Clark N.A., Brincat C.A., Yousuf A.A., Delancey J.O. Levator defects affect perineal position independently of prolapse status. Am. J. Obstet. Gynecol. 2010; 203(6): 595.e17-22. https://dx.doi.org/10. 1016/ j.ajog.2010.07.044.
  36. Chamie L.P., Ribeiro D., Caiado A.H.M., Warmbrand G., Serafini P.C. Translabial US and dynamic MR imaging of the pelvic floor: normal anatomy and dysfunction. Radiographics. 2018; 38(1): 287-308. https://dx.doi.org/10.1148/rg.2018170055.
  37. Garcia del Salto L., de Miguel Criado J., Aguilera del Hoyo L.F., Gutierrez Velasco L., Fraga Rivas P., Manzano Paradela M. et al. MR imaging-based assessment of the female pelvic floor. Radiographics. 2014; 34(5): 1417-39. https://dx.doi.org/10.1148/rg. 345140137.
  38. Arif-Tiwari H., Twiss C.O., Lin F.C., Funk J.T., Vedantham S., Martin D.R., Kalb B.T. Improved detection of pelvic organ prolapse: comparative utility of defecography phase sequence to nondefecography valsalva maneuvers in dynamic pelvic floor magnetic resonance imaging. Curr. Probl. Diagn. Radiol. 2019; 48(4): 342-7. https://dx.doi.org/10.1067/ j.cpradiol.2018.08.005.
  39. Bump R.C., Mattiasson A., Bo K., Brubaker L.P., DeLancey J.O., Klarskov P. et al. The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. Am. J. Obstet. Gynecol. 1996; 175(1): 10-7.
  40. Kobi M., Flusberg M., Paroder V., Chernyak V. Practical guide to dynamic pelvic floor MRI. J. Magn. Reson Imaging. 2018; 47(5): 1155-70. https://dx.doi.org/10.1002/jmri.25998.
  41. Fauconnier A., Zareski E., Abichedid J., Bader G., Falissard B., Fritel X. Dynamic magnetic resonance imaging for grading pelvic organ prolapse according to the International Continence Society classification: which line should be used? Neurourol. Urodyn. 2008; 27(3): 191-7. https://dx.doi.org/10.1002/ nau.20491.
  42. Lienemann A., Sprenger D., Janssen U., Grosch E., Pellengahr C., Anthuber C. Assessment of pelvic organ descent by use of functional cine-MRI: which reference line should be used? Neurourol. Urodyn. 2004; 23(1): 33-7. https://dx.doi.org/10.1002/nau.10170.
  43. Broekhuis S.R., Futterer J.J., Barentsz J.O., Vierhout M.E., Kluivers K.B. A systematic review of clinical studies on dynamic magnetic resonance imaging of pelvic organ prolapse: the use of reference lines and anatomical landmarks. Int. Urogynecol. J. Pelvic Floor. Dysfunct. 2009; 20(6): 721-9. https://dx.doi.org/10.1007/s00192-009-0848-3.
  44. Macura K.J., Thompson R.E., Bluemke D.A., Genadry R. Magnetic resonance imaging in assessment of stress urinary incontinence in women: parameters differentiating urethral hypermobility and intrinsic sphincter deficiency. World J. Radiol. 2015; 7(11): 394-404. https://dx.doi.org/10.4329/wjr.v7.i11.394.
  45. Kim J.K., Kim Y.J., Choo M.S., Cho K.S. The urethra and its supporting structures in women with stress urinary incontinence: MR imaging using an endovaginal coil. AJR Am. J. Roentgenol. 2003; 180(4): 1037-44. https://dx.doi.org/10.2214/ajr.180.4.1801037.
  46. Bitti G.T., Argiolas G.M., Ballicu N., Caddeo E., Cecconi M., Demurtas G. et al. Pelvic floor failure: MR imaging evaluation of anatomic and functional abnormalities. Radiographics. 2014; 34(2): 429-48. https://dx.doi.org/10.1148/rg.342125050.
  47. Khatri G., Carmel M.E., Bailey A.A., Foreman M.R., Brewington C.C., Zimmern P.E. et al. Postoperative imaging after surgical repair for pelvic floor dysfunction. Radiographics. 2016; 36(4): 1233-56. https://dx.doi.org/10.1148/rg.2016150215.
  48. Alt C.D., Benner L., Mokry T., Lenz F., Hallscheidt P., Sohn C. et al. Five-year outcome after pelvic floor reconstructive surgery: evaluation using dynamic magnetic resonance imaging compared to clinical examination and quality-of-life questionnaire. Acta Radiol. 2018; 59(10): 1264-73. https://dx.doi.org/10.1177/0284185118756459.
  49. Gupta S., Sharma J.B., Hari S., Kumar S., Roy K.K., Singh N. Study of dynamic magnetic resonance imaging in diagnosis of pelvic organ prolapse. Arch. Gynecol. Obstet. 2012; 286(4): 953-8. https://dx.doi.org/10.1007/ s00404-012-2381-8.
  50. Ramage L., Georgiou P., Qiu S., McLean P., Khan N., Kontnvounisios C. et al. Can we correlate pelvic floor dysfunction severity on MR defecography with patient-reported symptom severity? Updates Surg. 2018; 70(4): 467-76. https://dx.doi.org/10.1007/s13304-017-0506-0.
  51. Rosenkrantz A.B., Lewis M.T., Yalamanchili S., Lim R.P., Wong S., Bennett G.L. Prevalence of pelvic organ prolapse detected at dynamic MRI in women without history of pelvic floor dysfunction: comparison of two reference lines. Clin. Radiol. 2014; 69(2): e71-7. https://dx.doi.org/10.1016/ j.crad.2013.09.015.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. U-shaped puborectal muscle, in the form of a loop, covers the urethra, vagina and rectum, forming the urogenital gap

Download (118KB)
3. Fig. 2 Normal indicators of the state of the pelvic organs: A - anorectal angle at rest, B - anorectal angle with straining and relaxing the puborectal muscle, C - anorectal angle with tension of the puborectal muscle

Download (111KB)
4. Fig.3. Evaluation of parameters of the pelvic organs in the norm relative to the LCL, H- and M-lines

Download (133KB)
5. Fig.4. Normal location of the bladder fundus and urethral axis relative to the LCL at rest

Download (116KB)
6. Fig.5. Normal indicators of the location of the cervix at rest relative to the LCL, H- and M-lines

Download (114KB)
7. Fig.6. Severe cystocele on straining

Download (119KB)
8. Fig.7. Horizontal arrangement, expansion, gaping of the urethra; downward displacement of the anorectal junction with the formation of intussusception

Download (97KB)
9. Fig.8. Prolapse of the middle compartment on dMRI with straining: cystocele, horizontal position of the urethra, central prolapse, displacement of the uterus into the vagina, lengthening of the H- and M-lines.

Download (103KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies