Spectrum of significant serum biomolecules and genetic predictors in antenatal diagnosis of placenta accreta spectrum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: Placenta accreta spectrum (PAS) poses a serious threat to the life of the mother and fetus. Untimely diagnosis of PAS resulting in delayed treatment may be one of the key causes of serious adverse pregnancy outcomes. Recent studies have increasingly focused attention on various biomolecules that have the potential to diagnose PAS in due time.

Objective: To compare the effectiveness of various molecular biological markers in the antenatal diagnosis of abnormally invasive placenta.

Materials and methods: The analysis of the Russian and foreign research literature databases, namely eLibrary, Medline, PubMed, Embase, Crossref, RSCI, was carried out with the keywords “abnormally invasive placenta”, “placenta accreta spectrum”, “biomarkers”, “antenatal diagnosis”, “epithelial-mesenchymal transition”, “biomolecules”. According to the above goal, 68 literature sources were selected for the analysis.

Results: The significant biomarkers of abnormally invasive placenta and their dynamic change at different gestation periods were described and compared in this review. Biomolecules involved in the pathogenesis of abnormally invasive placenta can be conventionally divided into several groups. These are growth factors, interleukins, signaling molecules, oxidative stress products, microRNA, DNA, and circulating cells. Their content in biological fluids and placenta reflects the activity of pathophysiological processes involved in the formation of abnormally invasive placenta.

Conclusion: Studying the spectrum and concentration of biomarkers of abnormally invasive placenta can contribute to the antenatal confirmation of the diagnosis and severity of this pathology and it can be crucial for improving maternal and perinatal outcomes.

Full Text

Restricted Access

About the authors

Alena V. Kayumova

Urals Scientific Research Institute for Maternal and Child Care, Ministry of Health of Russia

Author for correspondence.
Email: kaum-doc@mail.ru
ORCID iD: 0000-0003-2685-4285

PhD, Leading Researcher, Deputy Chief Physician for Quality Control and Safety of Medical Activities, Ural Research Institute of Maternity and Child Care, Ministry of Health of the Russian Federation

Russian Federation, Yekaterinburg

Oksana A. Melkozerova

Urals Scientific Research Institute for Maternal and Child Care, Ministry of Health of Russia

Email: abolmed1@mail.ru
ORCID iD: 0000-0002-4090-0578

Dr. Med. Sci., Deputy Director for Science, Ural Research Institute of Maternity and Child Care, Ministry of Health of the Russian Federation

Russian Federation, Yekaterinburg

Nadezhda V. Bashmakova

Urals Scientific Research Institute for Maternal and Child Care, Ministry of Health of Russia

Email: bashmakovanv@niiomm.ru
ORCID iD: 0000-0001-5746-316X

Dr. Med. Sci., Professor, Chief Researcher, Ural Research Institute of Maternity and Child Care, Ministry of Health of the Russian Federation

Russian Federation, Yekaterinburg

Galina B. Malgina

Urals Scientific Research Institute for Maternal and Child Care, Ministry of Health of Russia

Email: galinamalgina@mail.ru
ORCID iD: 0000-0002-5500-6296

Dr. Med. Sci., Professor, Director, Ural Research Institute of Maternity and Child Care, Ministry of Health of the Russian Federation

Russian Federation, Yekaterinburg

Guzal N. Chistyakova

Urals Scientific Research Institute for Maternal and Child Care, Ministry of Health of Russia

Email: guzel@niiomm.ru
ORCID iD: 0000-0002-0852-6766

Dr. Med. Sci., Professor, Head of Research Department of Immunology and Microbiology, Ural Research Institute of Maternity and Child Care, Ministry of Health of the Russian Federation

Russian Federation, Yekaterinburg

Tatyana B. Tretyakova

Urals Scientific Research Institute for Maternal and Child Care, Ministry of Health of Russia

Email: TBTretyakova@yandex.ru
ORCID iD: 0000-0002-5715-7514

PhD, Associate Professor, Senior Researcher at the Genetic Research Group of the Department of Biochemical Research Methods, Laboratory Geneticist, Ural Research Institute of Maternity and Child Care, Ministry of Health of the Russian Federation

Russian Federation, Yekaterinburg

Anastasia A. Grishkina

Urals Scientific Research Institute for Maternal and Child Care, Ministry of Health of Russia

Email: xumukyc.ru@mail.ru
ORCID iD: 0000-0001-7433-2217

PhD, Senior Researcher, Department of Immunology, Clinical Microbiology, Pathomorphology and Cytodiagnosis, Pathologist, Ural Research Institute of Maternity and Child Care, Ministry of Health of the Russian Federation

Russian Federation, Yekaterinburg

References

  1. Jauniaux E., Ayres-de-Campos D.; FIGO Placenta Accreta Diagnosis and Management Expert Consensus Panel. FIGO consensus guidelines on placenta accrete spectrum disorders: Introduction. Int. J. Gynaecol. Obstet. 2018; 140(3):261-4. https://dx.doi.org/10.1002/ijgo.12406.
  2. Jauniaux E., Bunce C., Gronbeck L., Langhoff-Roos J. Prevalence and main outcomes of placenta accreta spectrum: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2019; 221(3): 208-18. https://dx.doi.org/10.1016/ j.ajog.2019.01.233.
  3. Ali H., Chandraharan E. Etiopathogenesis and risk factors for placental accrete spectrum disorders. Best. Pract. Res. Clin. Obstet. Gynaecol. 2021; 72: 4-12. https://dx.doi.org/10.1016/j.bpobgyn.2020.07.006.
  4. Jauniaux E., Bhide A., Kennedy A., Woodward P., Hubinont C., Collins S. FIGO consensus guidelines on placeta accreta spectrum disorders: prenatal diagnosis and screening, Int. J. Gynaecol Obstet. 2018; 140(3): 274-80. https://dx.doi.org/ 10.1002/ijgo.12408.
  5. Tinari S., Buca D., Cali G., Timor-Tritsch I., Palacios-Jaraquemada J., Rizzo G. et al. Risk factors, histopathology and diagnostic accuracy in posterior placenta accreta spectrum disorders: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2021; 57(6): 903-9. https://dx.doi.org/10.1002/ uog.22183.
  6. Scott A., Robert M., Anna M., Michele R., Jonathan L., Saira S. et al. Placenta accreta spectrum: biomarker discovery using plasma proteomics. Am. J. Obstet. Gynecol. 2020; 223(3): 433.e1-433.e14. https://dx.doi.org/10.1016/ j.ajog.2020.03.019.
  7. Guo Z., Yang H., Ma J. Maternal circulating biomarkers associated with placenta accreta spectrum disorders. Chin. Med. J. (Engl). 2023; 136(8): 995-7. https://dx.doi.org/10.1097/CM9.0000000000002241.
  8. Tianyue Z., Shaowei W. Potential serum biomarkers in prenatal diagnosis of placenta accreta spectrum. Front Med. (Lausanne). 2022; 3: 860186. https://dx.doi.org/10.3389/fmed.2022.860186.
  9. Al-Khan A., Youssef Y., Feldman K. Illsley N., Remache Y., Alvarez-Perezet J. et al. Biomarkers of abnormally invasive placenta. Placenta. 2020; 91: 37-42. https://dx.doi.org/10.10.1016/j.placenta.2020.01.007.
  10. Krstic J., Deutsch A., Fuchs J. Gauster M., Gorsek Sparovec T., Hiden U. et al. (Dis)Similarities between the decidual and tumor microenvironment. Biomedicines. 2022; 10(5): 1065. https://dx.doi.org/10.3390/biomedicines10051065.
  11. Pekar-Zlotin M., Melcer Y., Maymon R. Jauniaux E. Second-trimester levels of fetoplacental hormones among women with placenta accreta spectrum disorders. J. Gynaecol. Obstet. 2018; 140(3): 377-8. https://dx.doi.org/10.1002/ijgo.12352.
  12. Fyala E.A. Value of measurement of maternal serum alpha fetoprotien in diagnosis of pathologically adherent placenta in cases of placenta pravia. The Egyptian Journal of Fertility and Sterility. 2018; 22(2): 25-31. https://dx.doi.org/10.21608/egyfs.2018.65838.
  13. Berezowsky A., Pardo J., Ben-Zion M., Wiznitzer A., Aviram A. Second trimester biochemical markers as possible predictors of pathological placentation: a retrospective case-control study. Fetal Diagn. Ther. 2019; 46(3): 187-92. https://dx.doi.org/10.1159/000492829.
  14. Morlando M., Collins S. Placenta accreta spectrum disorders: challenges, risks, and management strategies. Int. J. Womens Health. 2020; 12: 1033-45. https://dx.doi.org/10.2147/IJWH.S224191.
  15. Arcade A., Li Z., Jianwen Z. Placenta accreta spectrum diagnosis challenges and controversies in current obstetrics: a review. Int. J. Womens Health. 2023; 15: 635-54. https://dx.doi.org/10.2147/IJWH.S395271.
  16. Uldbjerg C.S., Lim Y.H., Glazer C.H., Hauser R., Juul A., Bräuner E.V. Maternal serum α-fetoprotein levels during pregnancy and testicular cancer in male offspring: a cohort study within a Danish pregnancy screening registry. Int. J. Environ Res. Public. Health. 2022; 19(21): 14112. https://dx.doi.org/10.3390/ ijerph192114112.
  17. Aboughalia H., Bastawrous S., Revzin M.V., Delaney S.S., Katz D.S., Moshiri M. Imaging findings in association with altered maternal alpha-fetoprotein levels during pregnancy. Abdominal. Radiol. 2020; 45(10): 3239-57. https://dx.doi.org/10.1007/s00261-020-02499-2.
  18. Zhang T., Wang S. Potential serum biomarkers in prenatal diagnosis of placenta accreta spectrum. Front Med. 2022; 9: 860186. https://dx.doi.org/10.3389/ fmed.2022.860186.
  19. Penzhoyan G.A., Makukhina T.B. Significance of the routine first-trimester antenatal screening program for aneuploidy in the assessment of the risk of placenta accreta spectrum disorders. J. Perinat. Med. 2019; 48(1): 21-6. https://dx.doi.org/10.1515/jpm-2019-0261.
  20. Wang F., Chen S., Wang J., Wang Y., Ruan F., Shu H. et al. First trimester serum PAPP-A is associated with placenta accreta: a retrospective study. Arch. Gynecol. Obstet. 2021; 303(3): 645-52. https://dx.doi.org/10.1007/ s00404-020-05960-1.
  21. Bartels H.С., Postle J.D., Downey P., Brennan D.J. Placenta accreta spectrum: a review of pathology, molecular biology, and biomarkers. Dis. Markers. 2018; 2018: 1507674. https://dx.doi.org/10.1155/2018/1507674.
  22. Ophir E., Tendler R., Odeh M., Khouri S., Oettinger M. Creatine kinase as a biochemical marker in diagnosis of placenta increta and percreta. Am. J. Obstet. Gynecol. 1999; 180(4): 1039-40. https://dx.doi.org/10.1016/ S0002-9378(99)70683-6.
  23. Ersoy A.O., Oztas E., Ozler S., Ersoy E., Erkenekli K., Uyguret D. et al. Can venous ProBNP levels predict placenta accreta? J. Matern. Fetal Neonatal. Med. 2016; 29(24): 4020-4. https://dx.doi.org/10.3109/ 14767058.2016.1152576.
  24. Fayed M., Mourad A., Mahmoud M., Mohamed A. Role of Doppler ultrasound and creatine kinase as a biochemical marker in diagnosis of placenta accreta. J. Benha. J. Appl. Sci. 2020; 5(1): 1-7. https://dx.doi.org/1010.21608/bjas.2020.135124.
  25. Illsley N.P., Dasilva-Arnold S.C., Zamudio S., Alvarez M., Al-Khan A. Trophoblast invasion: lessons from abnormally invasive placenta (placenta accreta). Placenta 2020; 102: 61-6. https://dx.doi.org/10.1016/j.placenta.2020.01.004.
  26. Araujo Júnior E., Zamarian A.C., Caetano A.C., Peixoto A.B., Nardozza L.M. Physiopathology of late-onset fetal growth restriction. Minerva Obstet. Gynecol. 2021; 73(4): 392-408. https://dx.doi.org/10.23736/S2724-606X.21.04771-7
  27. Umapathy A., Chamley L.W, James J.L. Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies. Angiogenesis. 2020; 23(2): 105-17. https://dx.doi.org/10.1007/s10456-019-09694-w.
  28. Geindreau M., Ghiringhelli F., Bruchard M. Vascular endothelial growth factor, a key modulator of the anti-tumor immune response. Int. J. Mol. Sci. 2021; 22(9): 4871. https://dx.doi.org/10.3390/ijms22094871.
  29. Wang F., Zhang L., Zhang F. Wang J., Wang Y., Man D. First trimester serum PIGF is associated with placenta accreta. Placenta. 2020; 101: 39-44. https://dx.doi.org/10.1016/j.placenta.2020.08.023.
  30. Faraji A., Akbarzadeh-Jahromi M., Bahrami S., Gharamani S., Raeisi Shahraki H., Kasraeian M. at al. Predictive value of vascular endothelial growth factor and placenta growth factor for placenta accreta spectrum. J. Obstet. Gynaecol. 2022; 42(5): 900-5. https://dx.doi.org/10.1080/01443615.2021.1955337.
  31. Zhang F., Gu M., Chen P., Wan S., Zhou Q., Lu Y. et al. Distinguishing placenta accreta from placenta previa via maternal plasma levels of SFlt-1 and PLGF and the SFlt-1/PLGF Ratio. Placenta 2022; 124: 48-54. https://dx.doi.org/10.1016/j.placenta.2022.05.009.
  32. Макухина Т.Б., Пенжоян Г.А., Морозова Р.В., Задорная О.И., Донцова М.В., Кривоносова Н.В., Амирханян А.М. Роль факторов ангиогенеза в патогенезе врастания плаценты у женщин с предлежанием плаценты. Акушерство и гинекология. 2022; 9: 42-53. [Makukhina T.B., Penzhoyan G.A., Morozova R.V., Zadornaya O.I., Dontsova M.V., Krivonosova N.V., Amirkhanyan A.M. The role of angiogenic factors in the pathogenesis of placenta accreta spectrum in women with placenta previa. Obstetrics and Gynecology. 2022; (9): 42-53. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.9.42-53.
  33. Годзоева А.О., Зазерская И.Е., Васильева Е.Ю., Мащенко И.А., Яковлева Н.Ю., Ли О.А. Прогностическая значимость sFlt-1 и PIGF в диагностике глубокой инвазии плаценты. Журнал акушерства и женских болезней. 2022; 71(2): 39-48. [Godzoeva A.O., Zazerskaya I.E., Vasilyeva E.Y., Mashchenko I.A., Yakovleva N.Y., Li O.A. Prognostic value of sFlt-1 and PlGF in the diagnosis of abnormally deep placental invasion. Journal of Obstetrics and Women's Diseases. 2022; 71(2): 39-48. (in Russian)]. https://dx.doi.org/10.17816/JOWD88697.
  34. Wang N., Shi D., Li N., Qi H. Clinical value of serum VEGF and SFlt-1 in pernicious placenta previa. Ann. Med. 2021; 53(1): 2041-9. https://dx.doi.org/10.1080/07853890.2021.1999492.
  35. Johns L.E., Ferguson K.K., Cantonwine D.E., Mukherjee B., Meeker J.D., McElrath T.F. Subclinical changes in maternal thyroid function parameters in pregnancy and fetal growth. J. Clin. Endocrinol Metab. 2018; 103(4): 1349-58. https://dx.doi.org/10.1210/jc.2017-01698.
  36. Ozler S., Oztas E., Kebapcilar A., Caglar A.T. The role of thyroid-stimulating hormone and thyroglobulin antibody in abnormally invasive placenta. J. Matern. Fetal Neonatal. Med. 2022; 35(25): 5108-16. https://dx.doi.org/10.1080/ 14767058.2021.1875430.
  37. Milani A., Khadem-Ansari M., Rasmi Y. Effects of thyroid-stimulating hormone on adhesion molecules and pro-inflammatory cytokines secretion in human umbilical vein endothelial cells. Res. Pharm. Sci. 2018; 13(6): 546-56. https://dx.doi.org/10.4103/1735-5362.245966.
  38. Na T.Y., Schecterson L., Mendonsa A.M., Gumbiner B.M. The functional activity of E-Cadherin controls tumor cell metastasis at multiple steps. Proc. Natl. Acad. Sci. USA. 2020; 117(11): 5931-7. https://dx.doi.org/10.1073/ pnas.1918167117.
  39. Incebiyik A., Kocarslan S., Camuzcuoglu A., Hilali N., Incebiyik H., Camuzcuoglu H. Trophoblastic E-Cadherin and TGF-Beta expression in placenta percreta and normal pregnancies. J. Matern. Fetal Nejnatal Med. 2016; 29(1): 126-9. https://dx.doi.org/10.3109/14767058.2014.989203.
  40. El-Hussieny M., Mohammed E.M, Zenhom N.M., Refaie M.M., Okasha A.M., Tawab M.A.E. Possible role of TGF-B1, MMP-2, E-CAD, β-Catenin and antioxidants in pathogenesis of placenta accreta. Fetal. Pediatr. Pathol. 2021; 40(3): 222-32. https://dx.doi.org/10.1080/ 15513815.2020.1843574.
  41. Timofeeva A.V., Fedorov I.S., Pirogova M.M., Vasilchenko O.N., Chagovets V.V., Ezhovaet L.S. et al. Clusterin and its potential regulatory microRNAs as a part of secretome for the diagnosis of abnormally invasive placenta: accreta, increta, and percreta cases. Life. 2021; 11(4): 270. https://dx.doi.org/10.3390/life11040270.
  42. Soyama H., Miyamoto M., Ishibashi H., Iwahashi H., Matsuura H., Kakimotoet S. et al. Placenta previa may acquire invasive nature by factors associated with epithelial-mesenchymal transition and matrix metalloproteinases. J. Obstet. Gynaecol. Res. 2020; 2526-33. https://dx.doi.org/10.1111/ jog.14485.
  43. DaSilva-Arnold S.C., Kuo C.Y., Davra V., Remache Y., Kim P.С.W., Fisheret J.P. et al. ZEB2, a master regulator of the epithelial–mesenchymal transition, mediates trophoblast differentiation. MHR Basic Sci. Reprod. Med. 2019; 25(2): 61-75. https://dx.doi.org/10.1093/molehr/gay053.
  44. Li N., Yang T., Yu W., Liu H., Qiao C., Liuet C. et al. The role of Zeb1 in the pathogenesis of morbidly adherent placenta. Mol. Med. Rep. 2019; 20(3): 2812-22. https://dx.doi.org/10.3892/mmr.2019.10490.
  45. Gong H., Lu F., Zeng X., Bai Q. E2F Transcription factor 1 (E2F1) enhances the proliferation, invasion and EMT of trophoblast cells by binding to Zinc Finger E-Box Binding Homeobox 1 (ZEB1). Bioengineered. 2022; 13(2): 2360-70. https://dx.doi.org/10.1080/21655979.2021.2023793.
  46. Fu T., Liu J.Х., Xie J., Gao Z., Yang Z. LAMC2 as a prognostic biomarker in human cancer: a systematic review and meta-analysis. BMJ. 2022; 12(11): e063682. https://dx.doi.org/10.1136/bmjopen-2022-063682.
  47. Sung H., Ferlay J., Siegel R.L, Laversanne M., Soerjomataram I., Jemalet A. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer. J. Clin. 2021; 71(3): 209-49. https://dx.doi.org/10.3322/caac.21660.
  48. Wang R., Liu W., Zhao J., Li Liu 1, Li S., Duanet Y. et al. Overexpressed LAMC2 promotes trophoblast over-Invasion through the PI3K/Akt/MMP2/9 pathway in placenta accreta spectrum. J. Obstet. Gynaecol. Res. 2023; 49(2): 548-59. https://dx.doi.org/10.1111/jog.15493.
  49. Demir-Weusten A.Y., Seval Y., Kaufmann P., Demir R., Yucel G., Huppertz B. Matrix metalloproteinases-2, -3 and -9 in human term placenta. Acta Histochem. 2007; 109(5): 403-12. https://dx.doi.org/10.1016/ j.acthis.2007.04.001.
  50. Anthony C.C., Robbins R.J., Ahmed Y., Lee E. Nuclear |regulation of Wnt/β-Catenin Signaling: It’s a complex situation. Genes. 2020; 4; 11(8): 886. https://dx.doi.org/10.3390/genes11080886.
  51. Han Q., Zheng L., Liu Z., Luo J., Chen R., Yan J. Expression of β-catenin in human trophoblast and its role in placenta accreta and placenta previa. J. Int. Med. Res. 2019; 47(1): 206-14. https://dx.doi.org/10.1177/ 0300060518799265.
  52. Liu C., Wang J., Zheng Y., Zhu Y., Zhou Z., Liu Z. et al. Autocrine pro-legumain promotes breast cancer metastasis via binding to Integrin Avβ3. Oncogene. 2022; 41(34): 4091-103. https://dx.doi.org/10.1038/s41388-022-02409-4.
  53. Cheng T., Chang W.J., Chu H.Y., Luca R., Pedersen J.Z., Incerpi S. et al. Nano-strategies targeting the integrin Avβ3 Network for cancer therapy. Cells. 2021; 10(7): 1684. https://dx.doi.org/10.3390/cells10071684.
  54. Weitzner O., Seraya-Bareket C., Biron-Shental T., Fishamn A., Yagur Y., Tzadikevitch-Geffen K. et al. Enhanced expression of AVβ3 Integrin in villus and extravillous trophoblasts of placenta accreta. Arch. Gynecol. Obstet. 2021; 303(5): 1175-83. https://dx.doi.org/10.1007/s00404-020-05844-4.
  55. Khamoushi T., Ahmadi M., Ali-Hassanzadeh M., Zare M., Hesampour F., Gharesi-Fard B. et al. Evaluation of transforming growth factor-B1 and interleukin-35 serum levels in patients with placenta accreta. Lab. Med. 2021; 52(3): 245-9. https://dx.doi.org/10.1093/labmed/lmaa071.
  56. Ozler S., Oztas E., Guler B.G., Caglar A.T. Increased levels of serum IL-33 is associated with adverse maternal outcomes in placenta previa accreta. J. Matern. Fetal. Neonatal. Med. 2021; 34(19): 3192-9. https://dx.doi.org/10.1080/ 14767058.2019.1679766.
  57. Lombardelli L., Logiodice F., Kullolli O., Haller H., Agostinis C., Bulla R. et al. At embryo implantation site IL-35 secreted by trophoblast, polarizing T cells towards IL-35+ IL-10+ IL-4+ Th2-Type cells, could favour fetal allograft tolerance and pregnancy success. Int. J. Mol. Sci. 2022; 23(9): 4926. https://dx.doi.org/10.3390/ijms23094926.
  58. Chen H.Y., Zhou Z.Y., Luo Y.L., Luo Q., Fan J.T., Fan J. Knockdown of YKL-40 inhibits angiogenesis through regulation of VEGF/VEGFR2 and ERK1/2 signaling in endometrial cancer. Cell. Biology. International. 2021; 45(12): 2557-66. https://dx.doi.org/10.1002/cbin.11699.
  59. Liu W., Wang R., Liu S., Yin X., Huo Y., Zhang R., Li J. YKL-40 promotes proliferation and invasion of HTR-8/SVneo cells by activating akt/MMP9 signalling in placenta accreta spectrum disorders. J. Obstet. Gynaecol. 2023; 43(1): 2211681. https://dx.doi.org/10.1080/01443615.2023.2211681.
  60. Bayramoğlu Tepe N., Bayramoglu D., Taşkum İ. Elevated serum YKL-40 levels as a diagnostic and prognostic marker in the placenta accreta spectrum. Turk. J. Obstet. Gynecol. 2022; 19(2): 98-103. https://dx.doi.org/10.4274/ tjod.galenos.2022.94884.
  61. Afshar Y., Dong J., Zhao P., Li L., Wang S., Zhang R.Y. et al. Circulating trophoblast cell clusters for early detection of placenta accreta spectrum disorders. Nat. Commun. 2021; 12: 4408. https://dx.doi.org/10.1038/ s41467-021-24627-2.
  62. Chen B., Wang D., Bian Y., Li J., Yang T., Li N. et al. Systematic identification of hub genes in placenta accreta spectrum based on integrated transcriptomic and proteomic analysis. Front Genet. 2020; 11: 551495. https://dx.doi.org/10.3389/fgene.2020.551495.
  63. Yang T., Li N., Hou R., Qiao C., Liu C. Development and validation of a four-microRNA signature for placenta accreta spectrum: an integrated competing endogenous RNA network analysis. Ann. Transl. Med. 2020; 8(15): 919. https://dx.doi.org/10.21037/atm-20-1150.
  64. Chen S., Pang D., Li Y., Zhou J., Liu Y., Yang S. et al. Serum miRNA biomarker discovery for placenta accreta spectrum. Placenta. 2020; 101: 215-20. https://dx.doi.org/10.1016/j.placenta.2020.09.068.
  65. Uyanikoglu H., Sak M.E., Tatli F., Hilali N.G., Sak S., Incebiyik A. et al. Serum ischemia modified albumin level and its relationship with the thiol/disulfide balance in placenta percreta patients. J. Obstet. Gynaecol. 2018;38(8): 1073-7. https://dx.doi.org/10.1080/01443615.2018.1450369.
  66. Виницкий А.А., Шмаков Р.Г. Современные представления об этиопатогенезе врастания плаценты и перспективы его прогнозирования молекулярными методами диагностики. Акушерство и гинекология. 2017; 2: 5-10. [Vinitskiy A.A., Shmakov R.G. The modern concepts of etiology and pathogenesis placenta accreta and prospects of its prediction by molecular diagnostics. Obstetrics and Gynecology. 2017; (2): 5-10. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.2.5-10.
  67. Лисицына О.И., Низяева Н.В., Михеева А.А. Врастание плаценты. Эволюция знаний и умений. Акушерство и гинекология. 2021; 6: 34-40. [Lisitsyna O.I., Nizyaeva N.V., Mikheeva A.A. Placenta increta: Evolution of knowledge and skills. Obstetrics and Gynecology. 2021; (6): 34-40. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.6.34-40.
  68. Каюмова А.В., Мелкозерова О.А., Башмакова Н.В., Мальгина Г.Б., Косовцова Н.В. Современные инструментальные методы диагностики патологической инвазии плаценты. Акушерство и гинекология. 2023; 6: 5-14. [Kayumova A.V., Melkozerova O.A., Bashmakova N.V., Malgina G.B., Kosovtsova N.V. Modern instrumental methods for the diagnosis of placental pathological invasion. Obstetrics and Gynecology. 2023; (6): 5-14. (in Russian)]. https://dx.doi.org/10.18565/aig.2023.57.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies