Magnetic resonance imaging in the planning and monitoring of the treatment of cervical cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cervical cancer remains one of the leading causes of cancer morbidity and mortality among the female population worldwide. The prognosis as well as the choice of therapy depends on the initial assessment of the extent of the tumor spread. The latter is mainly determined with the use of methods of radiologic diagnostics: magnetic resonance imaging (MRI), positron emission tomography and multispiral computed tomography. These methods also play one of the leading roles in assessing the treatment response. The updated classification of the International Federation of Gynecology and Obstetrics (FIGO, 2018) recognizes the value of imaging in cervical cancer, in particular MRI, before, during and after antitumor treatment. The development of medical imaging and the search for new biomarkers will increase the prognostic value in assessing the response to therapy, identifying residual tumors and relapse of the disease.

This review presents the relevant information on the possibilities and limitations, the place of MRI in the complex diagnostic algorithm at the stage of primary assessment of the tumor process, the choice of tactics and analysis of the effectiveness of cervical cancer treatment. Different data bases, including PubMed/MEDLINE, eLibrary, Scopus, NCCN, ESUR, ACR, were searched. We analyzed the studies results on the use of noninvasive imaging techniques at the stage of primary diagnosis, assessing the effectiveness of treatment and its prognosis in patients with cervical cancer. The diagnostic opportunities and limitations of MRI in the cervical cancer diagnosis are summarized in our review. Due to the high soft tissue contrast, MRI is the method of choice in assessing the response to therapy, predicting treatment and further monitoring.

Conclusion: Noninvasive imaging plays a leading role in the primary diagnosis of cervical cancer. Further research is needed to overcome the difficulties of staging, monitoring the response to therapy and detecting relapse of the disease.

Full Text

Restricted Access

About the authors

Alina E. Solopova

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: dr.solopova@mail.ru
ORCID iD: 0000-0003-4768-115X
Scopus Author ID: 24460923200
ResearcherId: P-8659-2015

Dr. Med. Sci., Leading Researcher, Radiology Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Sechenov University, Ministry of Health of Russia

Russian Federation, Moscow

Bova B. Bendzhenova

Botkin City Clinical Hospital, Moscow Healthcare Department

Email: dr.solopova@mail.ru
ORCID iD: 0009-0004-4744-0422

MD, obstetrician-gynecologist, Gynecological Department, Botkin City Clinical Hospital

Russian Federation, Moscow

References

  1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021:71:209-49. https://dx.doi.org/10.3322/caac.21660.
  2. Bhatla N., Aoki D., Sharma D.N., Sankaranarayanan R. Cancer of the cervix uteri. Int. J. Gynaecol. Obstet. 2018; 143 Suppl 2: 22-36. https://dx.doi.org/10.1002/ijgo.12611.
  3. Berek J.S., Matsuo K., Grubbs B.H., Gaffney D.K., Lee S.I., Kilcoyne A. et al. Multidisciplinary perspectives on newly revised 2018 FIGO staging of cancer of the cervix uteri. J. Gynecol. Oncol. 2019; 30(2): e40. https://dx.doi.org/10.3802/jgo.2019.30.e40.
  4. Bhatla N., Berek J.S., Cuello Fredes M., Denny L.A., Grenman S., Karunaratne K. et al. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 2019; 145(1): 129-35. https://dx.doi.org/10.1002/ijgo.12749.
  5. Shrestha P., Poudyal B., Yadollahi S., Wright D.E., Gregory A.V., Warner J.D. et al. A systematic review on the use of artificial intelligence in gynecologic imaging - Background, state of the art, and future directions. Gynecol. Oncol. 2022;166(3): 596-605. https://dx.doi.org/10.1016/j.ygyno.2022.07.024.
  6. Epstein E., Testa A., Gaurilcikas A., Di Legge A., Ameye L., Atstupenaite V. et al. Early-stage cervical cancer: tumor delineation by magnetic resonance imaging and ultrasound - a European multicenter trial. Gynecol. Oncol. 2013; 128(3): 449-53. https://dx.doi.org/10.1016/j.ygyno.2012.09.025
  7. Testa A.C., Di Legge A., De Blasis I., Moruzzi M.C., Bonatti M., Collarino A. et al. Imaging techniques for the evaluation of cervical cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2014; 28(5): 741-68. https://dx.doi.org/10.1016/ j.bpobgyn.2014.04.009.
  8. Lee S.I., Catalano O.A., Dehdashti F. Evaluation of gynecologic cancer with MR imaging, 18F-FDG PET/CT, and PET/MR imaging. J. Nucl. Med. 2015; 56(3): 436-43. https://dx.doi.org/10.2967/jnumed.114.145011.
  9. Cibula D., Pötter R., Planchamp F., Avall-Lundqvist E., Fischerova D., Haie Meder C. et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients With Cervical Cancer. Int. J. Gynecol. Cancer. 2018; 28(4): 641-55. https://dx.doi.org/10.1097/IGC.0000000000001216.
  10. Sharma D.N., Thulkar S., Goyal S., Shukla N.K., Kumar S., Rath G.K. et al. Revisiting the role of computerized tomographic scan and cystoscopy for detecting bladder invasion in the revised FIGO staging system for carcinoma of the uterine cervix. Int. J. Gynecol. Cancer. 2010; 20(3): 368-72. https://dx.doi.org/10.1111/IGC.0b013e3181d02d2d.
  11. Meva J., Chaudhary R.K., Bhaduri D., Bhatia M., Hatti S., Ba R. Lacunae in International Federation of Gynecology and Obstetrics (FIGO) classification for cervical carcinoma: observational study using TNM classification as comparator. Int. J. Gynecol. Cancer. 2013; 23(6):1071-7. https://dx.doi.org/10.1097/IGC.0b013e31829783c4.
  12. Gee M.S., Atri M., Bandos A.I., Mannel R.S., Gold M.A., Lee S.I. Identification of distant metastatic disease in uterine cervical and endometrial cancers with FDG PET/CT: Analysis from the ACRIN 6671/GOG 0233 multicenter trial. Radiology. 2018; 287(1): 176-84. https://dx.doi.org/10.1148/ radiol.2017170963.
  13. Balcacer P., Shergill A., Litkouhi B. MRI of cervical cancer with a surgical perspective: staging, prognostic implications and pitfalls. Abdom. Radiol. (NY). 2019; 44(7): 2557-71. https://dx.doi.org/10.1007/ s00261-019-01984-7.
  14. Hou B., Xiang S.F., Yao G.D., Yang S.J., Wang Y.F., Zhang Y.X., Wang J.W. Diagnostic significance of diffusion-weighted MRI in patients with cervical cancer: a meta-analysis. Tumour Biol. 2014; 35(12):11761-9. https://dx.doi.org/10.1007/s13277-014-2290-5.
  15. Csutak C., Ordeanu C., Nagy V.M., Pop D.C., Bolboaca S.D., Badea R. et al. A prospective study of the value of pre- and post-treatment magnetic resonance imaging examinations for advanced cervical cancer. Clujul. Med. 2016; 89(3): 410-8. https://dx.doi.org/10.15386/cjmed-558.
  16. Bleker S.M., Bipat S., Spijkerboer A.M., van der Velden J., Stoker J., Kenter G.G. The negative predictive value of clinical examination with or without anesthesia versus magnetic resonance imaging for parametrial infiltration in cervical cancer stages IB1 to IIA. Int. J. Gynecol. Cancer. 2013; 23(1):193-8. https://dx.doi.org/10.1097/IGC.0b013e31827a4ad8.
  17. Sarabhai T., Schaarschmidt B.M., Wetter A., Kirchner J., Aktas B., Forsting M. et al. Comparison of 18F-FDG PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of the uterine cervix. Eur. J. Nucl. Med. Mol. Imaging. 2018; 45(1):67-76. https://dx.doi.org/10.1007/ s00259-017-3809-y.
  18. Haldorsen I.S., Lura N., Blaakær J., Fischerova D., Werner H.M.J. What Is the Role of Imaging at Primary Diagnostic Work-Up in Uterine Cervical Cancer? Curr. Oncol. Rep. 2019; 21(9): 77. https://dx.doi.org/10.1007/ s11912-019-0824-0.
  19. Patel-Lippmann K., Robbins J.B., Barroilhet L., Anderson B., Sadowski E.A., Boyum J. MR Imaging of cervical cancer. Magn. Reson. Imaging Clin. N. Am. 2017;25(3):635-49. https://dx.doi.org/10.1016/j.mric.2017.03.007.
  20. Woo S., Atun R., Ward Z.J., Scott A.M., Hricak H., Vargas H.A. Diagnostic performance of conventional and advanced imaging modalities for assessing newly diagnosed cervical cancer: systematic review and meta-analysis. Eur. Radiol. 2020;30(10):5560-77. https://dx.doi.org/10.1007/s00330-020-06909-3.
  21. Xiao M., Yan B., Li Y., Lu J., Qiang J. Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: a meta-analysis. Eur. Radiol. 2020;30(3):1405-18. https://dx.doi.org/10.1007/ s00330-019-06461-9.
  22. Woo S., Suh C.H., Kim S.Y., Cho J.Y., Kim S.H. Magnetic resonance imaging for detection of parametrial invasion in cervical cancer: An updated systematic review and meta-analysis of the literature between 2012 and 2016. Eur. Radiol. 2018;28(2):530-41. https://dx.doi.org/10.1007/s00330-017-4958-x.
  23. Sala E., Rockall A.G., Freeman S.J., Mitchell D.G., Reinhold C. The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know. Radiology. 2013; 266(3): 717-40. https://dx.doi.org/10.1148/radiol.12120315.
  24. Leblanc E., Narducci F., Frumovitz M., Lesoin A., Castelain B., Baranzelli M.C. et al. Therapeutic value of pretherapeutic extraperitoneal laparoscopic staging of locally advanced cervical carcinoma. Gynecol. Oncol. 2007;105(2): 304-11. https://dx.doi.org/10.1016/j.ygyno.2006.12.012.
  25. McMahon C.J., Rofsky N.M., Pedrosa I. Lymphatic metastases from pelvic tumors: anatomic classification, characterization, and staging. Radiology. 2010; 254(1): 31-46. https://dx.doi.org/10.1148/radiol.2541090361.
  26. Koh W.J., Abu-Rustum N.R., Bean S., Bradley K., Campos S.M., Cho K.R. et al. Cervical cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2019; 17(1): 64-84. https://dx.doi.org/10.6004/jnccn.2019.0001.
  27. Lucia F., Visvikis D., Desseroit M.C., Miranda O., Malhaire J.P., Robin P. et al. Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur. J. Nucl. Med. Mol. Imaging. 2018; 45(5): 768-86. https://dx.doi.org/10.1007/s00259-017-3898-7.
  28. Bae J.M., Kim C.K., Park J.J., Park B.K. Can diffusion-weighted magnetic resonance imaging predict tumor recurrence of uterine cervical cancer after concurrent chemoradiotherapy? Abdom. Radiol. (NY). 2016; 41(8):1604-10. https://dx.doi.org/10.1007/s00261-016-0730-y.
  29. Chino J., Annunziata C.M., Beriwal S., Bradfield L., Erickson B.A., Fields E.C. et al. The ASTRO clinical practice guidelines in cervical cancer: Optimizing radiation therapy for improved outcomes. Gynecol. Oncol. 2020; 159(3): 607-10. https://dx.doi.org/10.1016/j.ygyno.2020.09.015.
  30. Оводенко Д.Л., Хабас Г.Н., Макарова А.С., Шешко П.Л., Санникова М.В., Пирогова М.С., Голицына Ю.С., Мамедов Ш.Я., Григорьев В.Ю., Ашрафян Л.А. Лапароскопическая радикальная гистерэктомия при раке шейки матки стадий Ia2–IIb. Акушерство и гинекология. 2018; 4: 104-7. [Ovodenko D.L., Khabas G.N., Makarova A.S., Sheshko P.L., Sannikova M.V., Pirogova M.S., Golitsyna Yu.S., Mamedov Sh.Ya., Grigoryev V.Yu., Ashrafyan L.A. Laparoscopic radical hysterectomy for Stages IA2 and IB cervical cancer. Obstetrics and Gynecology. 2018; (4): 101-7. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.4.101-107.
  31. Querleu D., Morrow C.P. Classification of radical hysterectomy. Lancet Oncol. 2008; 9(3): 297-303. https://dx.doi.org/10.1016/ S1470-2045(08)70074-3.
  32. Cibula D., Pötter R., Planchamp F., Avall-Lundqvist E., Fischerova D., Haie Meder C. et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the management of patients with cervical cancer. Int. J. Gynecol. Cancer. 2018; 28(4): 641-55. https://dx.doi.org/10.1097/IGC.0000000000001216.
  33. Silvestris E., Paradiso A.V., Minoia C., Daniele A., Cormio G., Tinelli R. et al. Fertility preservation techniques in cervical carcinoma. Medicine (Baltimore). 2022; 101(17): e29163. https://dx.doi.org/10.1097/MD.0000000000029163.
  34. Nie H., Bu F., Xu J., Li T., Huang J. 29 immune-related genes pairs signature predict the prognosis of cervical cancer patients. Sci. Rep. 2020; 10(1):14152. https://dx.doi.org/10.1038/s41598-020-70500-5.
  35. Paik E.S., Lim M.C., Kim M.H., Kim Y.H., Song E.S., Seong S.J. et al. Prognostic model for survival and recurrence in patients with early-stage cervical cancer: A Korean Gynecologic Oncology Group Study (KGOG 1028). Cancer Res. Treat. 2020;52(1):320-33. https://dx.doi.org/10.4143/crt.2019.124.
  36. Солопова А.Е., Украинцев Н.И., Рубцова Н.А. Магнитно-резонансная томография в первичном стадировании и мониторинге рака шейки матки: обновление рекомендаций ESUR (2021). Акушерство и гинекология. 2022; 8: 36-46. [Solopova A.E., Ukraintsev N.I., Rubtsova N.A. Magnetic resonance imaging in the initial staging of cervical cancer: updating the 2021 ESUR guidelines. Obstetrics and Gynecology. 2022; (8): 36-46 (in Russian)]. https://dx.doi.org/10.18565/aig.2022.8.36-46.
  37. Kamimori T., Sakamoto K., Fujiwara K., Umayahara K., Sugiyama Y., Utsugi K. et al. Parametrial involvement in FIGO stage IB1 cervical carcinoma diagnostic impact of tumor diameter in preoperative magnetic resonance imaging. Int. J. Gynecol. Cancer. 2011; 21(2): 349-54.
  38. Manganaro L., Lakhman Y., Bharwani N., Gui B., Gigli S., Vinci V. et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018. Eur. Radiol. 2021; 31(10): 7802-16. https://dx.doi.org/10.1007/s00330-020-07632-9.
  39. Lu H., Wu Y., Liu X., Huang H., Jiang H., Zhu C. et al. The role of dynamic contrast-enhanced magnetic resonance imaging in predicting treatment response for cervical cancer treated with concurrent chemoradiotherapy. Cancer Manag. Res. 2021; 13: 6065-78. https://dx.doi.org/10.2147/ CMAR.S314289.
  40. Jung E.J., Byun J.M., Kim Y.N., Lee K.B., Sung M.S., Kim K.T., Jeong D.H. Cervical adenocarcinoma has a poorer prognosis and a higher propensity for distant recurrence than squamous cell carcinoma. Int. J. Gynecol. Cancer. 2017; 27(6): 1228-36. https://dx.doi.org/10.1097/IGC.0000000000001009.
  41. de Foucher T., Hennebert C., Dabi Y., Ouldamer L., Lavoué V., Dion L. et al. Recurrence pattern of cervical cancer based on the platinum sensitivity concept: a multi-institutional study from the FRANCOGYN Group. J. Clin. Med. 2020; 9(11): 3646. https://dx.doi.org/10.3390/jcm9113646.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. MR image of the normal anatomy of the cervix (the transition zone between stratified squamous and columnar epithelium is marked) [from the archive of Sokolova A.E.]

Download (276KB)
3. Fig. 2. Options for extended hysterectomy (classification by Qeurleu and Morrow, 2008 [31])

Download (249KB)
4. Fig. 3. MRI scans of a patient of reproductive age with assessment of selection criteria for the possibility of organ-preserving treatment (cervical length, vertical size of the tumor, depth of stromal invasion, absence of signs of infiltration of parametric tissue, distance from the upper pole of the formation to the internal os) [from the archive of Sokolova A E.]

Download (310KB)
5. Fig. 4. MRI scans of the patient after radical trachelectomy, without signs of relapse (A – post-contrast T1-VI in FatSat mode, B-E2-WI – both in the sagittal plane. The area of uterovaginal anastomosis without signs of infiltration, the uterine cavity is closed, data no information about outflow disturbance was received) [from the archive of Sokolova A.E.]

Download (695KB)
6. Fig. 5. CC T1b3 (FIGO). On T2-weighted images during chemotherapy, partial response (observation interval 3 months), Partial Response, PR-RECIST 1.1. There is a decrease in tumor size and degree of infiltration of surrounding tissues. (A, C – T2-WI in the sagittal and axial planes before treatment; B, D – T2-WI in the sagittal and axial planes 3 months after treatment) [from the archive of Sokolova A.E.]

Download (1019KB)
7. Fig. 6. CC T1b3 (FIGO). On T2-weighted images during chemotherapy, complete response (observation interval 2 months), CR-RECIST 1.1. At the second time point, no MR signs of the presence of a residual tumor are detected. The involuted stroma of the cervical cervix is completely visible, the undeformed hyperintense cervical canal is preserved throughout. (A, C - T2-VI in the sagittal and axial planes before treatment; .B, D - T2-VI in the sagittal and axial planes during treatment) [from the archive of Sokolova A.E.]

Download (783KB)
8. Fig. 7. CC T1b3. MRI scans of the patient on T2-WI during PCT, progression (observation interval 2.5 months), PD-RECIST 1.1. There is a marked increase in the predominantly exophytic tumor, the appearance of signs of invasion of the posterior parametrium, and the manifestation of small lymph nodes in the mesorectal tissue. (A, D - T2-WI in the sagittal and axial planes before treatment; B, C, E - T2-WI in the sagittal and axial planes during treatment) [from the archive of Sokolova A.E.]

Download (804KB)
9. Fig. 8. MRI scans of local cervical cancer recurrence (area highlighted by arrow) [from the archive of Sokolova A.E.]

Download (324KB)
10. Fig. 9. Formation of a vesicovaginal fistula against the background of tumor infiltration (between the posterior wall of the bladder and the wall of the uterovaginal anastomosis). (A - T2-WI in the sagittal plane, B, C - T2-WI in the axial plane, D - DWI with a high b-factor) [from the archive of Sokolova A.E.]

Download (868KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies