The role of magnetic resonance imaging and urtrasound diagnosis of fetal growth restriction in combination with pathological changes in fetal brain

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: Fetal growth restriction (FGR) is a common complication of pregnancy and, in severe cases, leads to increased perinatal mortality, neonatal morbidity, and poor prognosis for life expectancy in patients with congenital malformations of the central nervous system and hypoxic-ischemic changes in the brain. Early detection of brain injury in IUGR enables to predict short-term and long-term outcomes for the development of the central nervous system, that currently remains a serious issue.

Objective: The aim of the study was to assess the role of ultrasound and MRI in diagnosis of FGR in combination with pathological changes in fetal brain.

Materials and methods: The retrospective study included 24 patients with suspected FGR. The mean age of patients (Me; Q1–Q3) was 33 (25–41) years, the average pregnancy length was 27.5 (20–35) weeks. The patients underwent simultaneous diagnostic US and MRI of the fetuses in the second and third trimester of pregnancy to assess fetal head circumference using percentile values of nomograms, and identify comorbidity, including the changes in fetal brain.

Results: No false positive results were found. MRI data and US imaging data were absolutely similar in nomograms for measurement of fetal brain volume using percentile method in 24 fetuses (100%) with FGR. Among them, FGR in combination with congenital diaphragmatic hernia was diagnosed in 3 fetuses (12.5%), and spina bifida in 1 fetus (4.2%). Comparison of two imaging techniques showed that false-negative results of ultrasound detection of malformation of the cortical plate and assessment of sulcation of the fetal brain were found in 3 fetuses (12.5%) versus 7 fetuses (29.2%) using MRI. Also, ultrasound imaging in diagnosing isolated unilateral cerebellar hypoplasia, showed false negative results in 2 fetuses (8.3%) versus false negative MRIs in 5 fetuses (20.9%).

Conclusion: The study showed that diagnostic ultrasound and MRI are comparable techniques in assessing biometry of the fetal brain using centile nomograms. However, MRI helps to perform more careful assessment of the concomitant pathology of the fetal brain.

Full Text

Restricted Access

About the authors

Polina V. Kulabukhova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: kulpola@mail.ru
ORCID iD: 0000-0002-0363-3669

Radiologist, Radiology Department

Russian Federation, Moscow

Vladimir G. Bychenko

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_bychenko@oparina4.ru
ORCID iD: 0000-0002-1459-4124

PhD, Radiologist, Head of the Department of Radiation Diagnostics

Russian Federation, Moscow

Roman G. Shmakov

Moscow Regional Research Institute of Obstetrics and Gynecology named after Academician V.I. Krasnopolsky

Email: kulpola@mail.ru
ORCID iD: 0000-0002-2206-1002

Dr. Med. Sci., Professor of the RAS, Non-staff Chief Specialist in Obstetrics at Ministry of Health of Russia; Director of GBUZ MO MONIIAG

Russian Federation, Moscow

References

  1. Ananth C.V., Friedman A.M. Ischemic placental disease and risks of perinatal mortality and morbidity and neurodevelopmental outcomes. Semin. Perinatol. 2014; 38(3): 151-8. https://dx.doi.org/10.1053/j.semperi.2014.03.007.
  2. Большакова А.С., Барков И.Ю., Франкевич Н.А., Ярыгина Т.А., Шмаков Р.Г. Задержка роста плода при редком сочетании хромосомного и моногенного заболеваний. Акушерство и гинекология. 2024; 1: 74-81. [Bolshakova A.S., Barkov I.Yu., Frankevich N.A., Yarygina T.A., Shmakov R.G. Fetal growth restriction in the rare co-occurrence of chromosomal and monogenic diseases. Obstetrics and Gynecology. 2024; (1): 74-81. (in Russian)]. https://dx.doi.org/ 10.18565/aig.2023.288.
  3. Нефтерева А.А., Сакало В.А, Гладкова К.А., Костюков К.В., Ходжаева З.С. Возможные молекулярно-биологические механизмы формирования синдрома селективной задержки роста плода при монохориальной беременности. Акушерство и гинекология. 2021; 10: 5-12. [Neftereva A.A., Sakalo V.A., Gladkova K.A., Kоstyukov K.V., Khodzhaeva Z.S. Possible molecular and biological mechanisms for the development of selective fetal growth restriction in monochorionic twin pregnancy. Obstetrics and Gynecology. 2021; (10): 5-12. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.10.5-12.
  4. Resnik R. Intrauterine growth restriction. Obstet. Gynecol. 2002; 99(3): 490-6. https://dx.doi.org/10.1016/s0029-7844(01)01780-x.
  5. Cetin I., Alvino G. Intrauterine growth restriction: implications for placental metabolism and transport. A review. Placenta. 2009; 30(Suppl. A):S77-S82. https://dx.doi.org/10.1016/j.placenta.2008.12.006.
  6. Geva R., Eshel R., Leitner Y., Valevski A.F., Harel S. Neuropsychological outcome of children with intrauterine growth restriction: a 9-year prospective study. Pediatrics. 2006; 118(1): 91-100. https://dx.doi.org/10.1542/ peds.2005-2343.
  7. Miller S.L., Huppi P.S., Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol. 2016; 594(4): 807-23. https://dx.doi.org/10.1113/JP271402.
  8. Dubois J., Benders M., Borradori-Tolsa C., Cachia A., Lazeyras F., Ha-Vinh Leuchter R. et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain. 2008; 131(Pt. 8): 2028-41. https://dx.doi.org/10.1093/brain/awn137.
  9. Tolcos M., Bateman E., O'Dowd R., Markwick R., Vrijsen K., Rehn A. et al. Intrauterine growth restriction affects the maturation of myelin. Exp. Neurol. 2011; 232(1): 53-65. https://dx.doi.org/10.1016/j.expneurol.2011.08.002.
  10. Nitsos I., Rees S. The effects of intrauterine growth retardation on the development of neuroglia in fetal guinea pigs. An immunohistochemical and an ultrastructural study. Int. J. Dev. Neurosci. 1990; 8(3): 233-44. https://dx.doi.org/10.1016/0736-5748(90)90029-2.
  11. Olivier P., Baud O., Bouslama M., Evrard P., Gressens P., Verney C. Moderate growth restriction: deleterious and protective effects on white matter damage. Neurobiol. Dis. 2007; 26(1): 253-63. https://dx.doi.org/10.1016/ j.nbd.2007.01.001.
  12. Fischi-Gomez E., Muñoz-Moreno E., Vasung L., Griffa A., Borradori-Tolsa C., Monnier M. et al. Brain network characterization of high-risk preterm-born school-age children. Neuroimage Clin. 2016; 11: 195-209. https://dx.doi.org/ 10.1016/j.nicl.2016.02.001.
  13. Eixarch E., Muñoz-Moreno E., Bargallo N., Batalle D., Gratacos E. Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction. Am. J. Obstet. Gynecol. 2016; 214(6): 725.e1-e9. https://dx.doi.org/10.1016/j.ajog.2015.12.028.
  14. Волочаева М.В., Кан Н.Е., Тютюнник В.Л., Гасымова Ш.Р., Борисова А.Г. Особенности течения беременности и состояния здоровья новорожденных при задержке роста плода. Медицинский Совет. 2023; 13: 200-5. [Volochaeva M.V., Kan N.E., Tyutyunnik V.L., Gasymova Sh.R., Borisova A.G. Features of the course of pregnancy and health of newborns with intrauterine growth restriction. Medical Council. 2023; (13): 200-5. (in Russian)]. https://dx.doi.org/10.21518/ms2023-173.
  15. Baschat A.A. Neurodevelopment after fetal growth restriction. Fetal Diagn. Ther. 2014; 36(2): 136-42. https://dx.doi.org/10.1159/000353631.
  16. Longo S., Bollani L., Decembrino L., Di Comite A., Angelini M., Stronati M. Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J. Matern. Fetal Neonatal Med. 2013; 26(3): 222-5. https://dx.doi.org/ 10.3109/14767058.2012.715006.
  17. Malhotra A., Ditchfield M., Fahey M.C., Castillo-Melendez M., Allison B.J., Polglase G.R. et al. Detection and assessment of brain injury in the growth-restricted fetus and neonate. Pediatr. Res. 2017; 82(2): 184-93. https://dx.doi.org/10.1038/pr.2017.37.
  18. Ганичкина М.Б., Мантрова Д.А., Кан Н.Е., Тютюнник В.Л., Хачатурян А.А., Зиганшина М.М. Ведение беременности при задержке роста плода. Акушерство и гинекология. 2017; 10: 5-11. [Ganichkina M.B., Mantrova D.A., Kan N.E., Tyutyunnik V.L., Khachaturyan A.A., Ziganshina M.M. Pregnancy management complicated by intrauterine growth restriction. Obstetrics and Gynecology. 2017; (10): 5-11. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.10.5-11.
  19. Figueras F., Gardosi J. Intrauterine growth restriction: new concepts in antenatal surveillance, diagnosis, and management. Am. J. Obstet. Gynecol. 2011; 204(4): 288-300. https://dx.doi.org/10.1016/j.ajog.2010.08.055.
  20. Ярыгина Т.А., Гус А.И. Задержка (замедление) роста плода: все, что необходимо знать практикующему врачу. Акушерство и гинекология. 2020; 12: 14-24. [Yarygina T.A., Gus A.I. Fetal growth restriction (retardation): everything the practitioner should know. Obstetrics and Gynecology. 2020; (12): 14-24. (in Russian)]. https://dx.doi.org/10.18565/ aig.2020.12.14-24.
  21. Гуменюк Е.Г., Ившин А.А., Болдина Ю.С. Поиск предикторов задержки роста плода: от сантиметровой ленты до искусcтвенного интеллекта. Акушерство и гинекология. 2022; 12: 18-24. [Gumeniuk Е.G., Ivshin A.A., Boldina Yu.S. Search for the predictors of fetal growth restriction: from a measuring tape to artificial intellect. Obstetrics and Gynecology. 2022; (12): 18-24. (in Russian)]. https://dx.doi.org/10.18565/ aig.2022.185.
  22. Kurjak A., Predojevic M., Stanojevic M., Kadic A.S., Miskovic B., Badreldeen A. et al. Intrauterine growth restriction and cerebral palsy. Acta Inform. Med. 2012; 18(2): 64-82. https://dx.doi.org/10.5455/aim.2010.18.64-82.
  23. Damodaram M.S., Story L., Eixarch E., Patkee P., Patel A, Kumar S., Rutherford M. Foetal volumetry using magnetic resonance imaging in intrauterine growth restriction. Early Hum. Dev. 2012; 88 Suppl 1: S35-40. https://dx.doi.org/10.1016/j.earlhumdev.2011.12.026. .
  24. Banović V., Škrablin S., Banović M., Radoš M., Gverić-Ahmetašević S., Babić I. Fetal brain magnetic resonance imaging and long-term neurodevelopmental impairment. Int. J. Gynaecol. Obstet. 2014; 125(3): 237-40. https://dx.doi.org/ 10.1016/j.ijgo.2013.12.007.
  25. Egaña-Ugrinovic G., Sanz-Cortes M., Figueras F., Bargalló N., Gratacós E. Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction. Am. J. Obstet. Gynecol. 2013; 209(2): 126.e1-e8. https://dx.doi.org/10.1016/j.ajog.2013.04.008.
  26. Hüppi P.S. Cortical development in the fetus and the newborn: advanced MR techniques. Top. Magn. Reson. Imaging. 2011; 22(1): 33-8. https://dx.doi.org/10.1097/RMR.0b013e3182416f78.
  27. Egaña-Ugrinovic G., Sanz-Cortés M., Couve-Pérez C., Figueras F., Gratacós E. Corpus callosum differences assessed by fetal MRI in late-onset intrauterine growth restriction and its association with neurobehavior. Prenat. Diagn. 2014; 34(9): 843-9. https://dx.doi.org/10.1002/pd.4381.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Measurements taken for use in the centile calculator (https://www.developingbrain.co.uk/fetalcentiles): a - biparietal brain size, b - frontooccipital brain size, c - biparietal size and frontooccipital skull size, d - skull circumference, e - interhemispheric size of the cerebellum, f - diameter of the posterior horns of the lateral ventricles, g - height of the cerebellar vermis, h - anteroposterior size of the cerebellar vermis, i - region of the vermis

Download (62KB)
3. Fig. 2. MRI T2WI in the axial plane (A), T2WI in the frontal plane (B). Assessment of the fetal brain at 31-32 weeks of pregnancy. An aneurysm of the vein of Galen is detected (indicated by an arrow) in combination with a pathology of the formation of the cortical plate with signs of polymicrogyria (indicated by an arrow)

Download (20KB)
4. Fig. 3. MRI of the fetal brain at 29-30 weeks of pregnancy, T2VI in the axial (A), frontal (B), sagittal (C) planes. Agenesis of the corpus callosum is determined (indicated by an arrow) in combination with delayed sulcation and smoothness of the furrows of the cerebral hemispheres in the region of the frontal and parietal lobes

Download (27KB)
5. Fig. 4. MRI of the fetal brain at 32-33 weeks of pregnancy, T2VI in the frontal (A), sagittal (B), axial (C) planes. A subependymal hemorrhage on the right is determined (indicated by an arrow) with a breakthrough into the lateral ventricles and the presence of a level of hemorrhagic contents in the lateral ventricles (indicated by an arrow)

Download (27KB)

Copyright (c) 2024 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies